def get_next_vertex(current_vertex: Vertex, edge_name: str, step_cost: Callable,
                        env_config: EnvironmentConfiguration) -> Vertex:
        """

        :param current_vertex: the current state
        :param edge_name: edge name from current vertex to the next vertex
        :param step_cost: function that receives parent_vertex, action, new_node and returns the step cost.
        :param env_config: environment configuration
        :return: The new vertex
        """
        current_state = current_vertex.get_state()
        current_vertex_name = current_vertex.get_vertex_name()
        edges_dict = env_config.get_edges()
        vertexes_dict = env_config.get_vertexes()
        if edge_name not in edges_dict:
            current_vertex.set_state(current_state)
            print("No operation for this agent")
            current_vertex.set_cost(
                current_vertex.get_cost() + step_cost(current_vertex, Edge("", 0, ("", "")), current_vertex))
            return current_vertex  # No operation

        edge = edges_dict[edge_name]
        first_vertex, sec_vertex = edge.get_vertex_names()
        next_vertex_name = first_vertex if sec_vertex == current_vertex_name else sec_vertex
        next_vertex = vertexes_dict[next_vertex_name]
        next_state = State(next_vertex_name, copy.deepcopy(current_state.get_required_vertexes()))
        if next_vertex_name in current_state.get_required_vertexes():
            next_state.set_visited_vertex(next_vertex_name)
        next_vertex.set_state(next_state)
        people_in_next_vertex = next_vertex.get_people_num()

        new_next_vertex = Vertex(people_in_next_vertex, next_state, next_vertex.get_edges(),
                                 current_vertex, edge.get_edge_name(), current_vertex.get_depth(),
                                 EnvironmentUtils.g(current_vertex, env_config) + step_cost(current_vertex, edge, next_vertex))
        return new_next_vertex
Exemplo n.º 2
0
 def __make_node(self, state: State, env_conf: EnvironmentConfiguration):
     name = state.get_current_vertex_name()
     vertex = env_conf.get_vertexes()[name]
     vertex.set_state(state)
     vertex.set_cost(
         len(state.get_required_vertexes()) -
         sum(state.get_required_vertexes().values()))
     return vertex
 def terminate_eval(state: State, mode: str, is_max_player: bool) -> Tuple[int, int]:
     if mode == 'adversarial':
         print("terminated state, utility= ",
               TerminalEvaluator.adversarial_utility_eval(state.get_scores_of_agents()))
         return TerminalEvaluator.adversarial_utility_eval(state.get_scores_of_agents())
     if mode == "semi-cooperative":
         return TerminalEvaluator.semi_cooperative_utility_eval(state.get_scores_of_agents())
     else:
         # cooperative mode
         return TerminalEvaluator.full_cooperative_utility_eval(state.get_scores_of_agents(), is_max_player)
    def cut_off_utility_eval(state: State, is_max_player: bool, vertexes_dict: Dict[str, Vertex]) -> Tuple[int, int]:
        left_vertexes_to_visit = [state_name for state_name in state.get_required_vertexes().keys()
                                  if not state.get_required_vertexes()[state_name]]
        left_people_to_visit = 0
        for left_vertex_to_visit in left_vertexes_to_visit:
            left_people_to_visit += vertexes_dict[left_vertex_to_visit].get_people_num()

        max_player_score, min_player_score = state.get_scores_of_agents()
        if is_max_player:
            max_player_score += left_people_to_visit
        else:
            min_player_score += left_people_to_visit
        print("cut_off= ", str((max_player_score, min_player_score)))
        return max_player_score, min_player_score
 def get_goal_state(env_config: EnvironmentConfiguration) -> State:
     temp_dict = EnvironmentUtils.get_required_vertexes(env_config)
     goal_dict = {}
     for k, v in temp_dict.items():
         goal_dict[k] = True
     goal_state = State("", goal_dict)
     return goal_state
Exemplo n.º 6
0
 def calc_estimation_from_goal(self, current_state: State,
                               goal_state: State):
     vertex_to_is_visited = current_state.get_required_vertexes()
     counter = 0
     for _, was_visited in vertex_to_is_visited.items():
         if not was_visited:
             counter += 1
     return counter
Exemplo n.º 7
0
 def get_saved_people_num(state: State, current_traveled_states, env_conf: EnvironmentConfiguration) -> List[int]:
     score = 0
     traveled_vertexes = [vertex_name for vertex_name in StateUtils.get_state_traveled_vertexes(state) if
                          vertex_name not in current_traveled_states]
     current_traveled_states.append(state.get_current_vertex_name())
     vertexes_dict = env_conf.get_vertexes()
     for vertex in traveled_vertexes:
         score += vertexes_dict[vertex].get_people_num()
     return score
 def get_possible_moves(current_state: State, env_config: EnvironmentConfiguration) -> List[Edge]:
     current_vertex_name = current_state.get_current_vertex_name()
     vertexes_dict = env_config.get_vertexes()
     edges_dict = {k: v for k, v in env_config.get_edges().items() if k not in env_config.get_blocked_edges()}
     current_vertex = vertexes_dict[current_vertex_name]
     names_of_edges = [edge for edge in current_vertex.get_edges() if edge not in env_config.get_blocked_edges()]
     possible_edges = []
     for edge_name in names_of_edges:
         possible_edges.append(edges_dict[edge_name])
     return possible_edges
Exemplo n.º 9
0
 def update_func(self, agent: IAgent, action: str, current_state: State, costs_info: Tuple[List, int],
                 env_conf: EnvironmentConfiguration):
     vertex = env_conf.get_vertexes()[current_state.get_current_vertex_name()]
     vertex.set_state(current_state)
     new_state = EnvironmentUtils.get_next_vertex(vertex, action, agent.step_cost, env_conf).get_state()
     new_state.set_visited_vertex(new_state.get_current_vertex_name())
     costs, agent_num = costs_info
     edges_dict = env_conf.get_edges()
     if action in edges_dict.keys():
         costs[agent_num] += edges_dict[action].get_weight()
     return new_state
 def create_vertex(input_line: str) -> Optional[Tuple[str, Vertex]]:
     parts = input_line.split(ConfigurationReader.SPACE_SEPARATOR)
     parts_length = len(parts)
     peoples_in_vertex = 0
     if parts_length > 2 or parts_length == 0:
         print(
             f'input line: {input_line} is invalid. Correct format: #V4 P2 or #V4'
         )
         return None
     if parts_length == 2:
         peoples_in_vertex = int(parts[1].replace("P", ""))
     name = parts[0].replace("#V", "")
     return name, Vertex(peoples_in_vertex, State(name, (0, 0)), [])
Exemplo n.º 11
0
    def __result(self, action: str, state: State, is_max: bool,
                 env_config: EnvironmentConfiguration) -> State:
        """

        :param action: edge name
        :param state: current state
        :return: next state after moving on edge action from the given state
        """
        next_vertex = env_config.get_vertexes()[
            state.get_current_vertex_name()]
        next_vertex.set_state(state)
        return EnvironmentUtils.get_next_vertex(next_vertex, action,
                                                self.step_cost, env_config,
                                                is_max).get_state()
    def get_next_vertex(current_vertex: Vertex,
                        edge_name: str,
                        step_cost: Callable,
                        env_config: EnvironmentConfiguration,
                        is_max_player: bool = True) -> Vertex:
        """

        :param current_vertex: the current state
        :param edge_name: edge name from current vertex to the next vertex
        :param step_cost: function that receives parent_vertex, action, new_node and returns the step cost.
        :param is_max_player: True if this is the max player, false otherwise
        :param env_config: environment configuration
        :return: The new vertex
        """
        current_state = current_vertex.get_state()
        current_vertex_name = current_vertex.get_vertex_name()
        edges_dict = env_config.get_edges()
        vertexes_dict = env_config.get_vertexes()
        if edge_name not in edges_dict:
            current_vertex.set_state(current_state)
            print("edge_name= ", edge_name)
            print("No operation for this agent")
            current_vertex.set_cost(current_vertex.get_cost() + step_cost(
                current_vertex, Edge("", 0, ("", "")), current_vertex))
            return current_vertex  # No operation

        edge = edges_dict[edge_name]
        first_vertex, sec_vertex = edge.get_vertex_names()
        next_vertex_name = first_vertex if sec_vertex == current_vertex_name else sec_vertex
        next_vertex = vertexes_dict[next_vertex_name]
        scores_of_agents = current_state.get_scores_of_agents()
        if next_vertex_name in current_state.get_required_vertexes(
        ) and not current_state.get_required_vertexes()[next_vertex_name]:
            scores_of_agents = (scores_of_agents[0] +
                                next_vertex.get_people_num(),
                                scores_of_agents[1]) if is_max_player else (
                                    scores_of_agents[0], scores_of_agents[1] +
                                    next_vertex.get_people_num())

        next_state = State(
            next_vertex_name, scores_of_agents,
            copy.deepcopy(current_state.get_required_vertexes()),
            current_state.get_cost() +
            step_cost(current_vertex, edge, next_vertex))

        if next_vertex_name in current_state.get_required_vertexes():
            next_state.set_visited_vertex(next_vertex_name)
        next_vertex.set_state(next_state)
        people_in_next_vertex = next_vertex.get_people_num()
        next_state.set_parent_state(current_state)
        new_next_vertex = Vertex(
            people_in_next_vertex, next_state, next_vertex.get_edges(),
            current_vertex, edge.get_edge_name(), current_vertex.get_depth(),
            EnvironmentUtils.g(current_vertex, env_config) +
            step_cost(current_vertex, edge, next_vertex))

        return new_next_vertex
    def __print_final_scores(self, game_number, scores_of_agents):
        game_score = None
        is_max_player = True
        if len(scores_of_agents) != 2:
            return
        first_agent_score, second_agent_score = scores_of_agents
        temp = State("", (first_agent_score, second_agent_score))
        if game_number == 1:
            game_score = TerminalEvaluator.terminate_eval(temp, MiniMaxAgent.ADVERSARIAL_MODE, is_max_player)
        elif game_number == 2:
            game_score = TerminalEvaluator.terminate_eval(temp, MiniMaxAgent.COOPERATIVE_MODE, is_max_player)
        elif game_number == 3:
            game_score = TerminalEvaluator.terminate_eval(temp, MiniMaxAgent.SEMI_COOPERATIVE_MODE, is_max_player)

        print("Final Game Score: ", game_score)
    def run(self, env_config: EnvironmentConfiguration):
        chosen_agents = []
        states = []
        output_msg = "Choose Agent: \n 1) Adversarial Agent\n 2) Full Cooperative Agent\n 3) Semi Cooperative agent\n"
        num_of_agent = int(input("Enter number of agents\n"))
        game_number = int(input(output_msg))
        for i in range(num_of_agent):
            while game_number > 4 or game_number < 1:
                print("Invalid game number")
                game_number = int(input(output_msg))
            chosen_agents.append(self.__get_agent(game_number))
            EnvironmentUtils.print_environment(env_config)
            initial_state_name = input("Choose initial state for agent{0}:\n".format(i + 1))
            states.append(State(initial_state_name, (0, 0), EnvironmentUtils.get_required_vertexes(env_config)))

        simulator = Simulator()
        scores = simulator.run_simulate(chosen_agents, simulator.update_func, simulator.terminate_func,
                                        simulator.performance_func, env_config, states)
        self.__print_final_scores(game_number, scores)
Exemplo n.º 15
0
    def run(self, env_config: EnvironmentConfiguration):
        chosen_agents = []
        states = []
        output_msg = "Choose Agent: \n 1) Greedy Agent\n 2) A* Agent\n 3) RTA* agent\n 4) Bonus: SaboteurAgent\n"
        num_of_agent = int(input("Enter number of agents\n"))
        for _ in range(num_of_agent):
            agent_num = int(input(output_msg))
            while agent_num > 4 or agent_num < 1:
                print("Invalid agent number")
                agent_num = int(input(output_msg))
            chosen_agents.append(self.__get_agent(agent_num))
            EnvironmentUtils.print_environment(env_config)
            initial_state_name = input("Choose initial state\n")
            states.append(
                State(initial_state_name,
                      EnvironmentUtils.get_required_vertexes(env_config)))

        simulator = Simulator()
        simulator.run_simulate(chosen_agents, simulator.update_func,
                               simulator.terminate_func,
                               simulator.performance_func, env_config, states)
 def are_no_more_people(state: State):
     has_unvisited_state = False in state.get_required_vertexes().values()
     return not has_unvisited_state
Exemplo n.º 17
0
 def get_state_traveled_vertexes(state: State) -> List[str]:
     required_vertexes_dict = state.get_required_vertexes()
     return [vertex_name for vertex_name in required_vertexes_dict.keys()
             if required_vertexes_dict[vertex_name]]
Exemplo n.º 18
0
    def minimax(self, state: State, action_to_state: str, depth: int,
                alpha: int, beta: int, is_max_player: bool,
                env_config: EnvironmentConfiguration):
        if TerminalEvaluator.was_deadline_passed(state,
                                                 env_config.get_deadline()):
            return None, TerminalEvaluator.terminate_eval(
                state.get_parent_state(), self.__mode, is_max_player)
        if TerminalEvaluator.are_no_more_people(state):
            return action_to_state, TerminalEvaluator.terminate_eval(
                state, self.__mode, is_max_player)
        if depth == 0:
            return action_to_state, TerminalEvaluator.cut_off_utility_eval(
                state, is_max_player, env_config.get_vertexes())
        possible_edges = EnvironmentUtils.get_possible_moves(state, env_config)
        possible_actions = [edge.get_edge_name() for edge in possible_edges]
        if is_max_player:
            # Max Player
            best_action = None
            max_utility_value = -10000000
            max_opponent_utility = -10000000
            best_score = None

            for action in possible_actions:
                possible_next_state = self.__result(action,
                                                    copy.deepcopy(state),
                                                    is_max_player, env_config)
                is_max_next_player = False if self.__mode == MiniMaxAgent.ADVERSARIAL_MODE else True
                new_action, scores = self.minimax(
                    copy.deepcopy(possible_next_state), action, depth - 1,
                    alpha, beta, is_max_next_player, env_config)
                print("cost of possible_next_state = ",
                      possible_next_state.get_cost())
                current_utility, opponent_utility = scores
                if self.__is_better_score(max_utility_value, current_utility,
                                          max_opponent_utility,
                                          opponent_utility):
                    max_utility_value = current_utility
                    max_opponent_utility = opponent_utility
                    best_score = scores
                    best_action = action
                alpha = max(alpha, current_utility)
                if self.__mode == MiniMaxAgent.ADVERSARIAL_MODE and beta <= alpha:
                    break
            return best_action, best_score

        else:
            # Min Player
            min_utility_value = 10000000
            best_action = None
            best_score = None

            for action in possible_actions:
                possible_next_state = self.__result(action, state,
                                                    is_max_player, env_config)
                _, scores = self.minimax(copy.deepcopy(possible_next_state),
                                         action, depth - 1, alpha, beta, True,
                                         env_config)
                current_utility = scores[1]  # score of the minimum player
                if current_utility < min_utility_value:
                    min_utility_value = current_utility
                    best_score = scores
                    best_action = action
                beta = min(beta, current_utility)
                if self.__mode == MiniMaxAgent.ADVERSARIAL_MODE and beta <= alpha:
                    break
            return best_action, best_score
 def goal_test(self, problem: Tuple[State, State, EnvironmentConfiguration],
               current_state: State):
     _, goal_state, _ = problem
     return goal_state.get_required_vertexes(
     ) == current_state.get_required_vertexes()
 def was_deadline_passed(state: State, deadline):
     return state.get_cost() > deadline
 def goal_test(self, problem: Tuple[State, State, EnvironmentConfiguration], current_state: State):
     if self._expansions_num >= self.__limit:
         self._was_terminate = True
     _, goal_state, _ = problem
     return goal_state.get_required_vertexes() == current_state.get_required_vertexes()