def create_tasks(args):
    x_list = range(args.x_min, args.x_max + 1)
    y_list = range(args.y_min, args.y_max + 1)

    dataset_types = [args.dataset_type]
    if args.mask_pqa_apply:
        dataset_types.append(DatasetType.PQ25)

    from itertools import product

    if args.file_per_statistic:
        for (season, band, statistic) in product(args.get_seasons(), args.bands, args.statistics):
            acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(args.acq_min, args.acq_max, season,
                                                                                      seasons=SEASONS,
                                                                                      extend=True)
            for cell in list_cells_as_list(x=x_list, y=y_list, satellites=args.satellites,
                                           acq_min=acq_min_extended, acq_max=acq_max_extended,
                                           dataset_types=dataset_types, include=criteria):
                yield Arg25EpochStatisticsTask(x=cell.x, y=cell.y,
                                               acq_min=acq_min_extended, acq_max=acq_max_extended,
                                               season=season,
                                               epochs = list(args.get_epochs()),
                                               satellites=args.satellites,
                                               dataset_type=args.dataset_type,
                                               band=band,
                                               bands=args.bands,
                                               mask_pqa_apply=args.mask_pqa_apply, tidal_workflow=args.tidal_workflow,
                                               tidal_ifile=args.tidal_ifile,   
                                               mask_pqa_mask=args.mask_pqa_mask,
                                               x_chunk_size=args.x_chunk_size, y_chunk_size=args.y_chunk_size,
                                               statistic = statistic,
                                               statistics=args.statistics, interpolation=args.interpolation,
                                               output_directory=args.output_directory)
        return

    for (acq_min, acq_max), season in product(args.get_epochs(), args.get_seasons()):
        _log.debug("acq_min=[%s] acq_max=[%s] season=[%s]", acq_min, acq_max, season.name)

        acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(acq_min, acq_max, season,
                                                                                  seasons=SEASONS,
                                                                                  extend=True)

        _log.debug("\tacq_min_extended=[%s], acq_max_extended=[%s], criteria=[%s]", acq_min_extended, acq_max_extended, criteria)
        for cell in list_cells_as_list(x=x_list, y=y_list, satellites=args.satellites,
                                       acq_min=acq_min_extended, acq_max=acq_max_extended,
                                       dataset_types=dataset_types, include=criteria):
            _log.debug("\t%3d %4d", cell.x, cell.y)
            #yield args.create_task(x=cell.x, y=cell.y, acq_min=acq_min, acq_max=acq_max, season=season)
            _log.debug("Creating task for %s %s %s %s %s", cell.x, cell.y, acq_min, acq_max, season)

            yield Arg25BandStatisticsTask(x=cell.x, y=cell.y,
                                          acq_min=acq_min_extended, acq_max=acq_max_extended, season=season,
                                          satellites=args.satellites,
                                          dataset_type=args.dataset_type, bands=args.bands,
                                          mask_pqa_apply=args.mask_pqa_apply, mask_pqa_mask=args.mask_pqa_mask,
                                          x_chunk_size=args.x_chunk_size, y_chunk_size=args.y_chunk_size,
                                          statistics=args.statistics, interpolation=args.interpolation,
                                          output_directory=args.output_directory)
def create_tasks(args):
    x_list = range(args.x_min, args.x_max + 1)
    y_list = range(args.y_min, args.y_max + 1)

    dataset_types = [args.dataset_type]
    if args.mask_pqa_apply:
        dataset_types.append(DatasetType.PQ25)

    from itertools import product

    if args.file_per_statistic:
        for (season, band, statistic) in product(args.get_seasons(), args.bands, args.statistics):
            acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(args.acq_min, args.acq_max, season,
                                                                                      seasons=SEASONS,
                                                                                      extend=True)
            for cell in list_cells_as_list(x=x_list, y=y_list, satellites=args.satellites,
                                           acq_min=acq_min_extended, acq_max=acq_max_extended,
                                           dataset_types=dataset_types, include=criteria):
                yield Arg25EpochStatisticsTask(x=cell.x, y=cell.y,
                                               acq_min=acq_min_extended, acq_max=acq_max_extended,
                                               season=season,
                                               epochs = list(args.get_epochs()),
                                               satellites=args.satellites,
                                               dataset_type=args.dataset_type,
                                               band=band,
                                               bands=args.bands,
                                               mask_pqa_apply=args.mask_pqa_apply, mask_pqa_mask=args.mask_pqa_mask,
                                               x_chunk_size=args.x_chunk_size, y_chunk_size=args.y_chunk_size,
                                               statistic = statistic,
                                               statistics=args.statistics, interpolation=args.interpolation,
                                               output_directory=args.output_directory)
        return

    for (acq_min, acq_max), season in product(args.get_epochs(), args.get_seasons()):
        _log.debug("acq_min=[%s] acq_max=[%s] season=[%s]", acq_min, acq_max, season.name)

        acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(acq_min, acq_max, season,
                                                                                  seasons=SEASONS,
                                                                                  extend=True)

        _log.debug("\tacq_min_extended=[%s], acq_max_extended=[%s], criteria=[%s]", acq_min_extended, acq_max_extended, criteria)
        for cell in list_cells_as_list(x=x_list, y=y_list, satellites=args.satellites,
                                       acq_min=acq_min_extended, acq_max=acq_max_extended,
                                       dataset_types=dataset_types, include=criteria):
            _log.debug("\t%3d %4d", cell.x, cell.y)
            #yield args.create_task(x=cell.x, y=cell.y, acq_min=acq_min, acq_max=acq_max, season=season)
            _log.debug("Creating task for %s %s %s %s %s", cell.x, cell.y, acq_min, acq_max, season)

            yield Arg25BandStatisticsTask(x=cell.x, y=cell.y,
                                          acq_min=acq_min_extended, acq_max=acq_max_extended, season=season,
                                          satellites=args.satellites,
                                          dataset_type=args.dataset_type, bands=args.bands,
                                          mask_pqa_apply=args.mask_pqa_apply, mask_pqa_mask=args.mask_pqa_mask,
                                          x_chunk_size=args.x_chunk_size, y_chunk_size=args.y_chunk_size,
                                          statistics=args.statistics, interpolation=args.interpolation,
                                          output_directory=args.output_directory)
    def requires(self):
        dataset_types = [self.dataset_type]
        if self.mask_pqa_apply:
            dataset_types.append(DatasetType.PQ25)

        for (acq_min, acq_max) in self.epochs:
            _log.debug("acq_min=[%s] acq_max=[%s] season=[%s]", acq_min, acq_max, self.season.name)

            acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(acq_min, acq_max, self.season,
                                                                                      seasons=SEASONS,
                                                                                      extend=True)

            _log.debug("\tacq_min_extended=[%s], acq_max_extended=[%s], criteria=[%s]", acq_min_extended, acq_max_extended, criteria)
            for cell in list_cells_as_list(x=[self.x], y=[self.y], satellites=self.satellites,
                                                acq_min=acq_min_extended, acq_max=acq_max_extended,
                                                dataset_types=dataset_types, include=criteria):
                _log.debug("\t%3d %4d", cell.x, cell.y)
                # yield args.create_task(x=cell.x, y=cell.y, acq_min=acq_min, acq_max=acq_max, season=season)
                _log.debug("Creating task for %s %s %s %s %s", cell.x, cell.y, acq_min, acq_max, self.season)

                yield Arg25BandStatisticsTask(x=cell.x, y=cell.y,
                                              acq_min=acq_min_extended, acq_max=acq_max_extended, season=self.season,
                                              satellites=args.satellites,
                                              dataset_type=args.dataset_type, bands=args.bands,
                                              mask_pqa_apply=args.mask_pqa_apply, tidal_workflow=args.tidal_workflow,
                                              mask_pqa_mask=args.mask_pqa_mask,
                                              x_chunk_size=args.x_chunk_size, y_chunk_size=args.y_chunk_size,
                                              statistics=args.statistics, interpolation=args.interpolation,
                                              output_directory=args.output_directory)
    def requires(self):
        dataset_types = [self.dataset_type]
        if self.mask_pqa_apply:
            dataset_types.append(DatasetType.PQ25)

        for (acq_min, acq_max) in self.epochs:
            _log.debug("acq_min=[%s] acq_max=[%s] season=[%s]", acq_min, acq_max, self.season.name)

            acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(acq_min, acq_max, self.season,
                                                                                      seasons=SEASONS,
                                                                                      extend=True)

            _log.debug("\tacq_min_extended=[%s], acq_max_extended=[%s], criteria=[%s]", acq_min_extended, acq_max_extended, criteria)
            for cell in list_cells_as_list(x=[self.x], y=[self.y], satellites=self.satellites,
                                                acq_min=acq_min_extended, acq_max=acq_max_extended,
                                                dataset_types=dataset_types, include=criteria):
                _log.debug("\t%3d %4d", cell.x, cell.y)
                # yield args.create_task(x=cell.x, y=cell.y, acq_min=acq_min, acq_max=acq_max, season=season)
                _log.debug("Creating task for %s %s %s %s %s", cell.x, cell.y, acq_min, acq_max, self.season)

                yield Arg25BandStatisticsTask(x=cell.x, y=cell.y,
                                              acq_min=acq_min_extended, acq_max=acq_max_extended, season=self.season,
                                              satellites=args.satellites,
                                              dataset_type=args.dataset_type, bands=args.bands,
                                              mask_pqa_apply=args.mask_pqa_apply, mask_pqa_mask=args.mask_pqa_mask,
                                              x_chunk_size=args.x_chunk_size, y_chunk_size=args.y_chunk_size,
                                              statistics=args.statistics, interpolation=args.interpolation,
                                              output_directory=args.output_directory)
Exemplo n.º 5
0
def test_list_cells_120_020_2005_ls578_summer(config=None):

    filename = "cells_120_020_2005_ls578_summer.csv"

    acq_min, acq_max, include = build_season_date_criteria(ACQ_MIN_2005, ACQ_MAX_2005, Season.SUMMER)

    list_cells_to_file(x=[CELL_X], y=[CELL_Y],
                       acq_min=acq_min, acq_max=acq_max,
                       satellites=SATELLITE_LS578,
                       dataset_types=DATASET_TYPE_ARG25,
                       filename=filename,
                       include=include,
                       config=config)

    assert filecmp.cmp(filename, get_test_data_path(filename))
def get_tiles(x, y, satellites, acq_min, acq_max, season, dataset_type, mask_pqa_apply):

    acq_min, acq_max, criteria = build_season_date_criteria(acq_min, acq_max, season,
                                                            seasons=SEASONS, extend=True)

    dataset_types = [dataset_type]

    if mask_pqa_apply:
        dataset_types.append(DatasetType.PQ25)

    tiles = list_tiles_as_list(x=[x], y=[y], satellites=satellites,
                                    acq_min=acq_min, acq_max=acq_max,
                                    dataset_types=dataset_types, include=criteria)

    return tiles
Exemplo n.º 7
0
def test_list_tiles_120_020_2000_2010_ls578_summer_arg25_stats(config=None):

    filename = "tiles_120_020_2000_2010_ls578_summer_arg25_stats.csv"

    acq_min, acq_max, include = build_season_date_criteria(ACQ_MIN_2000, ACQ_MAX_2010, Season.SUMMER, seasons=SEASONS_ARG25_STATS)

    list_tiles_to_file(x=[CELL_X], y=[CELL_Y],
                       acq_min=acq_min,
                       acq_max=acq_max,
                       satellites=SATELLITE_LS578,
                       dataset_types=DATASET_TYPE_ARG25_FC25_PQ25,
                       filename=filename,
                       include=include,
                       config=config)

    assert filecmp.cmp(filename, get_test_data_path(filename))
    def get_tiles(self):
        acq_min, acq_max, criteria = build_season_date_criteria(self.acq_min, self.acq_max, self.season,
                                                                seasons=SEASONS, extend=True)

        _log.info("\tcriteria is %s", criteria)

        dataset_types = [self.dataset_type]

        if self.mask_pqa_apply:
            dataset_types.append(DatasetType.PQ25)

        tiles = list_tiles_as_list(x=[self.x], y=[self.y], satellites=self.satellites,
                                   acq_min=acq_min, acq_max=acq_max,
                                   dataset_types=dataset_types, include=criteria)

        return tiles
    def get_tiles(self):
        acq_min, acq_max, criteria = build_season_date_criteria(self.acq_min, self.acq_max, self.season,
                                                                seasons=SEASONS, extend=True)

        _log.info("\tcriteria is %s", criteria)

        dataset_types = [self.dataset_type]

        if self.mask_pqa_apply:
            dataset_types.append(DatasetType.PQ25)

        tiles = list_tiles_as_list(x=[self.x], y=[self.y], satellites=self.satellites,
                                   acq_min=acq_min, acq_max=acq_max,
                                   dataset_types=dataset_types, include=criteria)

        return tiles
Exemplo n.º 10
0
def test_list_cells_120_020_2000_2010_ls578_summer_arg25_stats(config=None):

    filename = "cells_120_020_2000_2010_ls578_wofs_summer_arg25_stats.csv"

    acq_min = parse_date_min("2000")
    acq_max = parse_date_max("2010")

    acq_min, acq_max, include = build_season_date_criteria(acq_min, acq_max, Season.SUMMER, seasons=SEASONS_ARG25_STATS)

    list_cells_to_file(x=[CELL_X], y=[CELL_Y],
                       acq_min=acq_min, acq_max=acq_max,
                       satellites=SATELLITE_LS578,
                       dataset_types=DATASET_TYPE_WOFS,
                       filename=filename,
                       include=include,
                       config=config)

    assert filecmp.cmp(filename, get_test_data_path(filename))
Exemplo n.º 11
0
def test_query():

    workflow = Arg25BandStatisticsWorkflow()

    workflow.x_min = workflow.x_max = TEST_X
    workflow.y_min = workflow.y_max = TEST_Y

    workflow.acq_min = parse_date_min("1985")
    workflow.acq_max = parse_date_max("2014")

    workflow.epoch = EpochParameter(5, 6)

    workflow.seasons = Season
    workflow.seasons = [Season.SUMMER]

    workflow.satellites = [Satellite.LS5, Satellite.LS7]

    workflow.mask_pqa_apply = True
    workflow.mask_pqa_mask = [PqaMask.PQ_MASK_SATURATION, PqaMask.PQ_MASK_CONTIGUITY, PqaMask.PQ_MASK_CLOUD]

    workflow.dataset_type = DatasetType.ARG25
    workflow.bands = Ls57Arg25Bands

    epochs = list(workflow.get_epochs())

    print ""

    print "epochs are", epochs

    for season, epoch in product(workflow.seasons, epochs):
        print season, epoch

        from datacube.api.utils import build_season_date_criteria
        acq_min, acq_max, criteria = build_season_date_criteria(epoch[0], epoch[1], season, seasons=SEASONS, extend=True)

        print acq_min, acq_max, criteria

        from datacube.api.query import list_tiles_as_list
        tiles = list_tiles_as_list(x=[workflow.x_min], y=[workflow.y_min], satellites=workflow.satellites,
                                        acq_min=acq_min, acq_max=acq_max,
                                        dataset_types=[workflow.dataset_type], include=criteria)

        print "Tiles found is ", len(tiles)
    def run(self):

        _log.info("*** Aggregating chunk NPY files into TIF")

        ndv = get_dataset_type_ndv(self.dataset_type)

        # TODO

        transform = (self.x, 0.00025, 0.0, self.y + 1, 0.0, -0.00025)

        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326)

        projection = srs.ExportToWkt()

        driver = gdal.GetDriverByName("GTiff")
        assert driver

        # Create the output TIF

        # TODO

        gdal_type = gdal.GDT_Int16
        if self.dataset_type == DatasetType.NDVI and self.statistic not in [
                Statistic.COUNT, Statistic.COUNT_OBSERVED
        ]:
            gdal_type = gdal.GDT_Float32

        raster = driver.Create(
            self.output().path,
            4000,
            4000,
            len(self.epochs),
            gdal_type,
            options=["INTERLEAVE=BAND", "COMPRESS=LZW", "TILED=YES"])
        assert raster

        # TODO

        raster.SetGeoTransform(transform)
        raster.SetProjection(projection)

        raster.SetMetadata(self.generate_raster_metadata())

        from itertools import product
        from datetime import date

        for index, (acq_min, acq_max) in enumerate(self.epochs, start=1):
            _log.info(
                "Doing band [%s] statistic [%s] which is band number [%s]",
                self.band.name, self.statistic.name, index)

            acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(
                acq_min, acq_max, self.season, seasons=SEASONS, extend=True)

            band = raster.GetRasterBand(index)
            assert band

            season = SEASONS[self.season]
            acq_min_str = date(acq_min_extended.year, season[0][0].value,
                               season[0][1]).strftime("%Y%m%d")
            acq_max_str = acq_max_extended.strftime("%Y%m%d")

            # TODO
            band.SetNoDataValue(ndv)
            band.SetDescription("{band} {stat} {start}-{end}".format(
                band=self.band.name,
                stat=self.statistic.name,
                start=acq_min_str,
                end=acq_max_str))

            for x_offset, y_offset in product(
                    range(0, 4000, self.x_chunk_size),
                    range(0, 4000, self.y_chunk_size)):
                filename = self.get_statistic_filename(acq_min_extended,
                                                       acq_max_extended,
                                                       x_offset, y_offset)

                _log.info("Processing chunk [%4d|%4d] for [%s] from [%s]",
                          x_offset, y_offset, self.statistic.name, filename)

                # read the chunk
                try:
                    data = numpy.load(filename)
                except IOError:
                    _log.info("Failed to load chunk")
                    continue

                _log.info("data is [%s]\n[%s]", numpy.shape(data), data)
                _log.info("Writing it to (%d,%d)", x_offset, y_offset)

                # write the chunk to the TIF at the offset
                band.WriteArray(data, x_offset, y_offset)

                band.FlushCache()

            band.ComputeStatistics(True)
            band.FlushCache()

            del band

        raster.FlushCache()
        del raster
    def run(self):

        _log.info("*** Aggregating chunk NPY files into TIF")

        ndv = get_dataset_type_ndv(self.dataset_type)

        # TODO

        transform = (self.x, 0.00025, 0.0, self.y+1, 0.0, -0.00025)

        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326)

        projection = srs.ExportToWkt()

        driver = gdal.GetDriverByName("GTiff")
        assert driver

        # Create the output TIF

        # TODO

        gdal_type = gdal.GDT_Int16
        if self.dataset_type == DatasetType.NDVI and self.statistic not in [Statistic.COUNT, Statistic.COUNT_OBSERVED]:
            gdal_type = gdal.GDT_Float32

        raster = driver.Create(self.output().path, 4000, 4000, len(self.epochs), gdal_type,
                               options=["INTERLEAVE=BAND", "COMPRESS=LZW", "TILED=YES"])
        assert raster

        # TODO

        raster.SetGeoTransform(transform)
        raster.SetProjection(projection)

        raster.SetMetadata(self.generate_raster_metadata())

        from itertools import product
        from datetime import date

        for index, (acq_min, acq_max) in enumerate(self.epochs, start=1):
            _log.info("Doing band [%s] statistic [%s] which is band number [%s]", self.band.name, self.statistic.name, index)

            acq_min_extended, acq_max_extended, criteria = build_season_date_criteria(acq_min, acq_max, self.season,
                                                                                      seasons=SEASONS,
                                                                                      extend=True)

            band = raster.GetRasterBand(index)
            assert band

            season = SEASONS[self.season]
            acq_min_str = date(acq_min_extended.year, season[0][0].value, season[0][1]).strftime("%Y%m%d")
            acq_max_str = acq_max_extended.strftime("%Y%m%d")

            # TODO
            band.SetNoDataValue(ndv)
            band.SetDescription("{band} {stat} {start}-{end}".format(band=self.band.name, stat=self.statistic.name, start=acq_min_str, end=acq_max_str))

            for x_offset, y_offset in product(range(0, 4000, self.x_chunk_size),
                                              range(0, 4000, self.y_chunk_size)):
                filename = self.get_statistic_filename(acq_min_extended, acq_max_extended, x_offset, y_offset)

                _log.info("Processing chunk [%4d|%4d] for [%s] from [%s]", x_offset, y_offset, self.statistic.name, filename)

                # read the chunk
                try:
                    data = numpy.load(filename)
                except IOError:
                    _log.info("Failed to load chunk")
                    continue

                _log.info("data is [%s]\n[%s]", numpy.shape(data), data)
                _log.info("Writing it to (%d,%d)", x_offset, y_offset)

                # write the chunk to the TIF at the offset
                band.WriteArray(data, x_offset, y_offset)

                band.FlushCache()

            band.ComputeStatistics(True)
            band.FlushCache()

            del band

        raster.FlushCache()
        del raster