def test_recursive_definitions_produce_errors():
    with pytest.raises(ValueError):
        StudyDefinition(
            population=patients.all(),
            this=patients.satisfying("that = 1"),
            that=patients.satisfying("this = 1"),
        )
def test_patients_categorised_as():
    session = make_session()
    session.add_all(
        [
            Patient(
                Sex="M",
                CodedEvents=[
                    CodedEvent(CTV3Code="foo1", ConsultationDate="2000-01-01")
                ],
            ),
            Patient(
                Sex="F",
                CodedEvents=[
                    CodedEvent(CTV3Code="foo2", ConsultationDate="2000-01-01"),
                    CodedEvent(CTV3Code="bar1", ConsultationDate="2000-01-01"),
                ],
            ),
            Patient(
                Sex="M",
                CodedEvents=[
                    CodedEvent(CTV3Code="foo2", ConsultationDate="2000-01-01")
                ],
            ),
            Patient(
                Sex="F",
                CodedEvents=[
                    CodedEvent(CTV3Code="foo3", ConsultationDate="2000-01-01")
                ],
            ),
        ]
    )
    session.commit()
    foo_codes = codelist([("foo1", "A"), ("foo2", "B"), ("foo3", "C")], "ctv3")
    bar_codes = codelist(["bar1"], "ctv3")
    study = StudyDefinition(
        population=patients.all(),
        category=patients.categorised_as(
            {
                "W": "foo_category = 'B' AND female_with_bar",
                "X": "sex = 'F' AND (foo_category = 'B' OR foo_category = 'C')",
                "Y": "sex = 'M' AND foo_category = 'A'",
                "Z": "DEFAULT",
            },
            sex=patients.sex(),
            foo_category=patients.with_these_clinical_events(
                foo_codes, returning="category", find_last_match_in_period=True
            ),
            female_with_bar=patients.satisfying(
                "has_bar AND sex = 'F'",
                has_bar=patients.with_these_clinical_events(bar_codes),
            ),
        ),
    )
    results = study.to_dicts()
    assert [x["category"] for x in results] == ["Y", "W", "Z", "X"]
    # Assert that internal columns do not appear
    assert "foo_category" not in results[0].keys()
    assert "female_with_bar" not in results[0].keys()
    assert "has_bar" not in results[0].keys()
def test_column_name_clashes_produce_errors():
    with pytest.raises(ValueError):
        StudyDefinition(
            population=patients.all(),
            age=patients.age_as_of("2020-01-01"),
            status=patients.satisfying(
                "age > 70 AND sex = 'M'",
                sex=patients.sex(),
                age=patients.age_as_of("2010-01-01"),
            ),
        )
def test_patients_satisfying_with_hidden_columns():
    condition_code = "ASTHMA"
    condition_code2 = "COPD"
    session = make_session()
    patient_1 = Patient(DateOfBirth="1940-01-01", Sex="M")
    patient_2 = Patient(DateOfBirth="1940-01-01", Sex="F")
    patient_3 = Patient(DateOfBirth="1990-01-01", Sex="M")
    patient_4 = Patient(DateOfBirth="1940-01-01", Sex="F")
    patient_4.CodedEvents.append(
        CodedEvent(CTV3Code=condition_code, ConsultationDate="2010-01-01")
    )
    patient_5 = Patient(DateOfBirth="1940-01-01", Sex="F")
    patient_5.CodedEvents.append(
        CodedEvent(CTV3Code=condition_code, ConsultationDate="2010-01-01")
    )
    patient_5.CodedEvents.append(
        CodedEvent(CTV3Code=condition_code2, ConsultationDate="2010-01-01")
    )
    session.add_all([patient_1, patient_2, patient_3, patient_4, patient_5])
    session.commit()
    study = StudyDefinition(
        population=patients.all(),
        sex=patients.sex(),
        age=patients.age_as_of("2020-01-01"),
        at_risk=patients.satisfying(
            """
            (age > 70 AND sex = "M")
            OR
            (has_asthma AND NOT copd)
            """,
            has_asthma=patients.with_these_clinical_events(
                codelist([condition_code], "ctv3")
            ),
            copd=patients.with_these_clinical_events(
                codelist([condition_code2], "ctv3")
            ),
        ),
    )
    results = study.to_dicts()
    assert [i["at_risk"] for i in results] == ["1", "0", "0", "1", "0"]
    assert "has_asthma" not in results[0].keys()
def test_make_df_from_expectations_with_satisfying():
    study = StudyDefinition(
        population=patients.all(),
        has_condition=patients.satisfying(
            "condition_a OR condition_b",
            condition_a=patients.with_these_clinical_events(
                codelist(["A", "B", "C"], system="ctv3")),
            condition_b=patients.with_these_clinical_events(
                codelist(["X", "Y", "Z"], system="ctv3")),
            return_expectations={
                "date": {
                    "earliest": "2001-01-01",
                    "latest": "2020-03-01"
                },
                "incidence": 0.95,
            },
        ),
    )
    population_size = 10000
    result = study.make_df_from_expectations(population_size)
    assert result.columns == ["has_condition"]
def test_patients_satisfying():
    condition_code = "ASTHMA"
    session = make_session()
    patient_1 = Patient(DateOfBirth="1940-01-01", Sex="M")
    patient_2 = Patient(DateOfBirth="1940-01-01", Sex="F")
    patient_3 = Patient(DateOfBirth="1990-01-01", Sex="M")
    patient_4 = Patient(DateOfBirth="1940-01-01", Sex="F")
    patient_4.CodedEvents.append(
        CodedEvent(CTV3Code=condition_code, ConsultationDate="2010-01-01")
    )
    session.add_all([patient_1, patient_2, patient_3, patient_4])
    session.commit()
    study = StudyDefinition(
        population=patients.all(),
        sex=patients.sex(),
        age=patients.age_as_of("2020-01-01"),
        has_asthma=patients.with_these_clinical_events(
            codelist([condition_code], "ctv3")
        ),
        at_risk=patients.satisfying("(age > 70 AND sex = 'M') OR has_asthma"),
    )
    results = study.to_dicts()
    assert [i["at_risk"] for i in results] == ["1", "0", "0", "1"]
def test_using_expression_in_population_definition():
    session = make_session()
    session.add_all(
        [
            Patient(
                Sex="M",
                DateOfBirth="1970-01-01",
                CodedEvents=[
                    CodedEvent(CTV3Code="foo1", ConsultationDate="2000-01-01")
                ],
            ),
            Patient(Sex="M", DateOfBirth="1975-01-01"),
            Patient(
                Sex="F",
                DateOfBirth="1980-01-01",
                CodedEvents=[
                    CodedEvent(CTV3Code="foo1", ConsultationDate="2000-01-01")
                ],
            ),
            Patient(Sex="F", DateOfBirth="1985-01-01"),
        ]
    )
    session.commit()
    study = StudyDefinition(
        population=patients.satisfying(
            "has_foo_code AND sex = 'M'",
            has_foo_code=patients.with_these_clinical_events(
                codelist(["foo1"], "ctv3")
            ),
            sex=patients.sex(),
        ),
        age=patients.age_as_of("2020-01-01"),
    )
    results = study.to_dicts()
    assert results[0].keys() == {"patient_id", "age"}
    assert [i["age"] for i in results] == ["50"]
Exemplo n.º 8
0
     "rate": "uniform",
     "incidence": 0.2,
 },
 ## STUDY POPULATION (required)
 population=patients.satisfying(
     """
     copd AND
     (age >=35 AND age <= 110) AND
     ever_smoked AND
     has_follow_up AND NOT
     recent_asthma AND NOT
     other_respiratory AND NOT
     nebules AND NOT
     ltra_single
     """,
     has_follow_up=patients.registered_with_one_practice_between(
         "2019-02-28", "2020-02-29"),
     recent_asthma=patients.with_these_clinical_events(
         asthma_codes,
         between=["2017-02-28", "2020-02-29"],
     ),
     #### NEBULES
     nebules=patients.with_these_medications(
         nebulised_med_codes,
         between=["2019-02-28", "2020-02-29"],
     ),
 ),
 ## OUTCOMES (at least one outcome or covariate is required)
 icu_date_admitted=patients.admitted_to_icu(
     on_or_after="2020-03-01",
     include_day=True,
     asthma_codes,
     between=["2017-02-28", "2020-02-29"],
     return_expectations={"incidence": 0.5},
 ),
 asthma_ever=patients.with_these_clinical_events(
     asthma_ever_codes,
     on_or_before="2020-02-29",
     return_expectations={"incidence": 0.8},
 ),
 age_cat=patients.satisfying(
     "age >=18 AND age <= 110",
     return_expectations={"incidence": 0.9},
     age=patients.age_as_of(
         "2020-02-29",
         return_expectations={
             "rate": "universal",
             "int": {
                 "distribution": "population_ages"
             },
         },
     ),
 ),
 has_follow_up=patients.registered_with_one_practice_between(
     "2019-02-28", "2020-02-29", return_expectations={"incidence": 0.9}),
 copd=patients.with_these_clinical_events(
     copd_codes,
     on_or_before="2020-02-29",
     return_expectations={"incidence": 0.05},
 ),
 ### OTHER RESPIRATORY
 other_respiratory=patients.with_these_clinical_events(
Exemplo n.º 10
0
 default_expectations={
     "date": {"earliest": "1970-01-01", "latest": "today"},
     "rate": "uniform",
     "incidence": 0.05,
 },
 ## STUDY POPULATION (required)
 population=patients.all(),
 copd=patients.with_these_clinical_events(
     copd_codes, on_or_before="2020-02-29", return_expectations={"incidence": 0.4},
 ),
 age_cat=patients.satisfying(
     "age >=35 AND age <= 110",
     return_expectations={"incidence": 0.9},
     age=patients.age_as_of(
         "2020-02-29",
         return_expectations={
             "rate": "universal",
             "int": {"distribution": "population_ages"},
         },
     ),
 ),
 ever_smoked=patients.with_these_clinical_events(
     filter_codes_by_category(clear_smoking_codes, include=["S", "E"]),
     on_or_before="2020-02-29",
     return_expectations={"incidence": 0.9},
 ),
 has_follow_up=patients.registered_with_one_practice_between(
     "2019-02-28", "2020-02-29", return_expectations={"incidence": 0.9},
 ),
 recent_asthma=patients.with_these_clinical_events(
     asthma_codes,
    population=patients.satisfying(
        """
        (
          has_asthma OR
          (asthma_ever AND any_asthma_med)
        ) AND
        (age >=18 AND age <= 110) AND
        has_follow_up AND NOT
        copd AND NOT
        other_respiratory AND NOT
        nebules AND NOT
        (
          (lama_single OR laba_lama) AND NOT (
            high_dose_ics OR
            high_dose_ics_single_ing OR
            high_dose_ics_multiple_ingredient OR
            low_med_dose_ics_single_ingredient OR
            low_med_dose_ics_multiple_ingredient OR
            low_med_dose_ics OR
            ics_single OR
            laba_ics OR
            laba_lama_ics
          )
        )
        """,
        has_asthma=patients.with_these_clinical_events(
            asthma_codes,
            between=["2017-02-28", "2020-02-29"],
        ),
        has_follow_up=patients.registered_with_one_practice_between(
            "2019-02-28", "2020-02-29"),
        nebules=patients.with_these_medications(
            nebulised_med_codes,
            between=["2019-02-28", "2020-02-29"],
        ),
        any_asthma_med=patients.satisfying("""
            ltra_single OR
            laba_lama_ics OR
            laba_lama OR
            laba_ics OR
            lama_single OR
            laba_single OR
            sama_single OR
            saba_single OR
            ics_single OR
            low_med_dose_ics OR
            low_med_dose_ics_multiple_ingredient OR
            low_med_dose_ics_single_ingredient OR
            high_dose_ics_multiple_ingredient OR
            high_dose_ics_single_ing OR
            high_dose_ics

            """)),