Exemplo n.º 1
0
    def __init__(self, db=False):
        self.loader = _DataLoader(db=db, ib=False)
        self.master_screener = pd.DataFrame()
        self.strategy = FabStrategy()
        self.tf_delay_match = {
            235: 0,
            145: 7,
            210: 5,
            165: 4,
            130: 13,
            220: 12
        }
        self.list_of_enters = {
            ('Rule 1', 'Long'): self.strategy.rule_1_buy_enter,
            ('Rule 1', 'Short'): self.strategy.rule_1_short_enter,
            ('Rule 2', 'Long'): self.strategy.rule_2_buy_enter,
            ('Rule 2', 'Short'): self.strategy.rule_2_short_enter,
            ('Rule 3', 'Long'): self.strategy.rule_3_buy_enter,
            ('Rule 3', 'Short'): self.strategy.rule_3_short_enter
        }

        self.list_of_exits = {
            ('Rule 1', 'Long'): self.strategy.rule_1_buy_exit,
            ('Rule 1', 'Short'): self.strategy.rule_1_short_exit,
            ('Rule 2', 'Long'): self.strategy.rule_2_buy_stop_absolute,
            ('Rule 2', 'Short'): self.strategy.rule_2_short_stop_absolute,
            ('Rule 3', 'Long'): self.strategy.rule_1_buy_exit,
            ('Rule 3', 'Short'): self.strategy.rule_1_short_exit
        }
Exemplo n.º 2
0
 def __init__(self):
     self.start = False
     self.client = None
     self.capital = None
     self.leverage = 1 / 1000
     self.tf = None
     self.symbol = None
     self.loader = _DataLoader()
     self.df = None
Exemplo n.º 3
0
 def __init__(self):
     self.end = datetime.today().strftime('%Y-%m-%d')
     self.loader = _DataLoader()
     self.range_data = None
     self.symbol_data = None
     self.start = None
     self.summary = "Nothing to Show Yet"
     self.tf = None
     self.trade_history = TradeHistory()
     self.tf_data = None
Exemplo n.º 4
0
 def optimal_sensitivity_calculator(self, symbol_list, sensitivity_list, tf, delay, rule, side):
     df = pd.DataFrame()
     for symbol in symbol_list:
         self.loader = _DataLoader(db=True)
         self.load_backtesting_data(symbol=symbol, all_data=True)
         for sensitivity in sensitivity_list:
             print(symbol, sensitivity)
             self.start_backtesting(tf=tf, delay=delay, sensitivity=sensitivity)
             row = self.generate_asset_metrics(self.detailed_th, f'Rule {rule}', side, sensitivity=sensitivity)
             df = df.append(row)
     return df
Exemplo n.º 5
0
 def __init__(self):
     self.live_trade_history = TradeHistory()
     self.trade_journal = pd.DataFrame()
     self.dic = {"BUY": "Long", "SELL": "Short"}
     self.inverse_dic = dict((y, x) for x, y in self.dic.items())
     self.latest_trade_info = None
     self.latest_trade = None
     self.loader = _DataLoader(db=False)
     self.precisions = {
         symbol_dic['symbol']: symbol_dic['quantityPrecision']
         for symbol_dic in self.loader.binance.futures_exchange_info()
         ['symbols']
     }
Exemplo n.º 6
0
 def __init__(self, db=True):
     self.loader = _DataLoader(db=db)
     self.analyzer = Analyzer()
     self.date_range = None
     self.symbol_data = None
     self.start = None
     self.end = datetime.today().strftime('%Y-%m-%d')
     self.tf = None
     self.df = None
     self.df_th = None
     self.df_tf = None
     self.trade_history = TradeHistory()
     self.illustrator = Illustrator()
     self.strategy = FabStrategy()
     self.tf_data = None
     self.pnl = None
     self.trades = None
     self.summary = "Nothing to Show Yet"
Exemplo n.º 7
0
Arquivo: trader.py Projeto: haseab/FAB
 def __init__(self, binance=True, qtrade=False, db=False, ib=False):
     if binance:
         self.binance = Client()
     # self.ftx = FtxClient()
     self.capital = None
     self.leverage = 1
     self.tf = None
     self.executor = TradeExecutor()
     self.loader = _DataLoader(db=db, qtrade=qtrade, ib=ib)
     self.illustrator = Illustrator()
     self.strategy = FabStrategy()
     self.order_history = pd.DataFrame()
     self.trade_replay = []
     self.precisions = {
         symbol_dic['symbol']: symbol_dic['quantityPrecision']
         for symbol_dic in self.loader.binance.futures_exchange_info()
         ['symbols']
     }
Exemplo n.º 8
0
 def optimal_tf_calculator(self, symbols_list, tf_list, delay_list):
     df = pd.DataFrame()
     for symbol in symbols_list:
         self.loader = _DataLoader(db=True)
         self.load_backtesting_data(symbol=symbol, all_data=True)
         if len(self.df) == 0:
             continue
         for tf in tf_list:
             for delay in delay_list:
                 print(symbol, tf, delay)
                 self.start_backtesting(tf, delay=delay)
                 if len(self.trade_history) in [0,1,2]:
                     continue
                 for rule in [1, 2, 3]:
                     for side in ['Long', 'Short']:
                         df = pd.concat([df, self.generate_asset_metrics(self.detailed_th, f'Rule {rule}', side, delay=delay)])
         print('saved', symbol)
         df.to_csv(f"Full TF Delay Backtest {symbols_list[0]} to {symbols_list[-1]}.csv")
     return df