Exemplo n.º 1
0
    if episode_length % 1000 == 0:
        if tag_txt:
            path = checkpoint_path + '/' + str(episode_length) + '_txt.model'
            torch.save(model_txt.state_dict(), path)
        if tag_img:
            path = checkpoint_path + '/' + str(episode_length) + '_img.model'
            torch.save(model_img.state_dict(), path)

    if tag_txt:
        model_txt.train()
    if tag_img:
        model_img.train()

    if dataset == 'mir':
        ori_img_fc7, pos_img_fc7, neg_img_fc7, ori_img_fc6, pos_img_fc6, neg_img_fc6, ori_img_p5, pos_img_p5, neg_img_p5, ori_txt, pos_txt, neg_txt, lab = traintest.get_batch(
            batch_size)

    if tag_img:
        ori_img_fc7 = Variable(ori_img_fc7).cuda()
        pos_img_fc7 = Variable(pos_img_fc7).cuda()
        neg_img_fc7 = Variable(neg_img_fc7).cuda()

        ori_img_fc6 = Variable(ori_img_fc6).cuda()
        pos_img_fc6 = Variable(pos_img_fc6).cuda()
        neg_img_fc6 = Variable(neg_img_fc6).cuda()

        ori_img_p5 = Variable(ori_img_p5).cuda()
        pos_img_p5 = Variable(pos_img_p5).cuda()
        neg_img_p5 = Variable(neg_img_p5).cuda()

        hash_o_img = Variable(torch.zeros(batch_size, 1).cuda())
Exemplo n.º 2
0
    if update_lr_flag:
        if opt.learning_rate_decay_start >= 0 and epoch > opt.learning_rate_decay_start:
            frac = (epoch - opt.learning_rate_decay_start
                    ) // opt.learning_rate_decay_every
            decay_factor = opt.learning_rate_decay_rate**frac
            current_lr = opt.learning_rate * decay_factor
            utils.set_lr(optimizer, current_lr)
        if opt.scheduled_sampling_start >= 0 and epoch > opt.scheduled_sampling_start:
            frac = (epoch - opt.scheduled_sampling_start
                    ) // opt.scheduled_sampling_increase_every
            model.ss_prob = min(opt.scheduled_sampling_increase_prob**frac,
                                opt.scheduled_sampling_max_prob)
        update_lr_flag = False

    # 加载训练数据
    data = loader.get_batch('train')

    torch.cuda.synchronize()

    buf = [
        data['fc_feats'], data['att_feats'], data['captions'], data['masks']
    ]
    buf = [
        Variable(torch.from_numpy(d), requires_grad=False).cuda() for d in buf
    ]
    fc_feats, att_feats, captions, masks = buf

    optimizer.zero_grad()
    output = model(fc_feats, att_feats, captions)
    loss = criterion(output, captions[:, 1:], masks[:, 1:])
    loss.backward()