Exemplo n.º 1
0
    def init(self):
        start_time_sec = int(round(time.time()))
        print('Content Creation Status Report::Start')
        result_loc = self.data_store_location.joinpath('content_creation')
        result_loc.mkdir(exist_ok=True)

        execution_date = datetime.strptime(self.execution_date, "%d/%m/%Y")
        get_tenant_info(result_loc_=result_loc,
                        org_search_=self.org_search,
                        date_=execution_date)

        get_content_model(result_loc_=result_loc,
                          druid_=self.druid_hostname,
                          date_=execution_date,
                          status_=['Live', 'Review', 'Draft', 'Unlisted'])

        self.generate_report(result_loc, execution_date)
        print('Content Creation Status Report::Completed')
        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [{
            'metric': 'timeTakenSecs',
            'value': time_taken
        }, {
            'metric': 'date',
            'value': execution_date.strftime('%Y-%m-%d')
        }]
        push_metric_event(metrics, 'Content Creation Status')
Exemplo n.º 2
0
    def init(self):
        start_time_sec = int(round(time.time()))
        print("GPS::Start")
        execution_date_ = datetime.strptime(self.execution_date, "%d/%m/%Y")
        self.data_store_location.joinpath(
            'textbook_reports',
            execution_date_.strftime('%Y-%m-%d')).mkdir(exist_ok=True)
        get_scan_counts(
            result_loc_=self.data_store_location.joinpath('textbook_reports'),
            druid_=self.druid_hostname,
            date_=execution_date_)

        get_tenant_info(
            result_loc_=self.data_store_location.joinpath('textbook_reports'),
            org_search_=self.org_search,
            date_=execution_date_)

        self.get_tbs()
        self.generate_report()
        print("GPS::End")
        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [{
            "metric": "timeTakenSecs",
            "value": time_taken
        }, {
            "metric": "date",
            "value": execution_date_.strftime("%Y-%m-%d")
        }]
        push_metric_event(metrics, "ECG Learning")
 def init(self):
     start_time_sec = int(round(time.time()))
     print("Content Consumption Report::Start")
     self.data_store_location = Path(self.data_store_location)
     org_search = self.org_search
     druid = self.druid_hostname
     druid_rollup = self.druid_rollup_hostname
     content_search = self.content_search
     execution_date = datetime.strptime(self.execution_date, "%d/%m/%Y")
     result_loc = self.data_store_location.joinpath('content_plays')
     result_loc.parent.joinpath('portal_dashboards').mkdir(exist_ok=True)
     result_loc.parent.joinpath('config').mkdir(exist_ok=True)
     get_data_from_blob(
         result_loc.parent.joinpath('config', 'diksha_config.json'))
     with open(result_loc.parent.joinpath('config', 'diksha_config.json'),
               'r') as f:
         self.config = json.loads(f.read())
     get_tenant_info(result_loc_=result_loc,
                     org_search_=org_search,
                     date_=execution_date)
     print("Success::Tenant info")
     get_content_model(result_loc_=result_loc,
                       druid_=druid_rollup,
                       date_=execution_date,
                       config_=self.config,
                       version_='v2')
     print("Success::content model snapshot")
     get_tb_content_mapping(result_loc_=result_loc,
                            date_=execution_date,
                            content_search_=content_search)
     print("Success::TB Content Map")
     self.get_weekly_report(result_loc_=result_loc,
                            druid_rollup_=druid_rollup,
                            date_=execution_date,
                            config=self.config)
     print("Success::Weekly Conent Consumption")
     self.get_overall_report(result_loc_=result_loc,
                             druid_rollup_=druid_rollup,
                             date_=execution_date,
                             config=self.config)
     print("Success::Overall Conent Consumption")
     self.get_last_week_report(result_loc_=result_loc,
                               date_=execution_date,
                               num_weeks=6)
     print("Success:::Last 6 weeks")
     shutil.rmtree(result_loc)
     print("Content Consumption Report::Completed")
     end_time_sec = int(round(time.time()))
     time_taken = end_time_sec - start_time_sec
     metrics = [{
         "metric": "timeTakenSecs",
         "value": time_taken
     }, {
         "metric": "date",
         "value": execution_date.strftime("%Y-%m-%d")
     }]
     push_metric_event(metrics, "Content Consumption Metrics")
Exemplo n.º 4
0
 def init(self):
     start_time_sec = int(round(time.time()))
     print("Content Consumption Report::Start")
     self.data_store_location = Path(self.data_store_location)
     org_search = self.org_search
     druid = self.druid_hostname
     cassandra = self.cassandra_host
     keyspace = self.keyspace_prefix + 'content_db'
     execution_date = datetime.strptime(self.execution_date, "%d/%m/%Y")
     result_loc = self.data_store_location.joinpath('content_plays')
     result_loc.parent.joinpath('portal_dashboards').mkdir(exist_ok=True)
     result_loc.parent.joinpath('config').mkdir(exist_ok=True)
     get_data_from_blob(
         result_loc.parent.joinpath('config', 'diksha_config.json'))
     with open(result_loc.parent.joinpath('config', 'diksha_config.json'),
               'r') as f:
         self.config = json.loads(f.read())
     get_tenant_info(result_loc_=result_loc,
                     org_search_=org_search,
                     date_=execution_date)
     get_content_model(result_loc_=result_loc,
                       druid_=druid,
                       date_=execution_date)
     self.define_keyspace(cassandra_=cassandra, keyspace_=keyspace)
     for i in range(7):
         analysis_date = execution_date - timedelta(days=i)
         get_content_plays(result_loc_=result_loc,
                           date_=analysis_date,
                           druid_=druid)
         self.insert_data_to_cassandra(result_loc_=result_loc,
                                       date_=analysis_date,
                                       cassandra_=cassandra,
                                       keyspace_=keyspace)
     self.get_weekly_plays(result_loc_=result_loc,
                           date_=execution_date,
                           cassandra_=cassandra,
                           keyspace_=keyspace)
     print("Content Consumption Report::Completed")
     end_time_sec = int(round(time.time()))
     time_taken = end_time_sec - start_time_sec
     metrics = [{
         "metric": "timeTakenSecs",
         "value": time_taken
     }, {
         "metric": "date",
         "value": execution_date.strftime("%Y-%m-%d")
     }]
     push_metric_event(metrics, "Content Consumption Metrics")
    def init(self):
        start_time_sec = int(round(time.time()))
        self.start_time = datetime.now()
        print("Started at: ", self.start_time.strftime('%Y-%m-%d %H:%M:%S'))
        end_date_ = datetime.strptime(self.execution_date, "%d/%m/%Y")
        self.data_store_location.joinpath('textbook_reports').mkdir(
            exist_ok=True)
        self.data_store_location.joinpath(
            'textbook_reports',
            end_date_.strftime('%Y-%m-%d')).mkdir(exist_ok=True)
        self.data_store_location.joinpath('portal_dashboards').mkdir(
            exist_ok=True)
        get_tenant_info(
            result_loc_=self.data_store_location.joinpath('textbook_reports'),
            org_search_=self.org_search,
            date_=end_date_)
        # # TODO: SB-15177 store scan counts in cassandra
        get_scan_counts(
            result_loc_=self.data_store_location.joinpath('textbook_reports'),
            druid_=self.druid_hostname,
            date_=end_date_)
        self.backend_grade = pd.DataFrame(
            sorted_grades.init()).set_index('grade')
        self.generate_reports(result_loc_=self.data_store_location,
                              content_search_=self.content_search,
                              content_hierarchy_=self.content_hierarchy,
                              date_=end_date_)
        end_time = datetime.now()
        print("Ended at: ", end_time.strftime('%Y-%m-%d %H:%M:%S'))
        print("Time taken: ", str(end_time - self.start_time))

        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [{
            "metric": "timeTakenSecs",
            "value": time_taken
        }, {
            "metric": "date",
            "value": end_date_.strftime("%Y-%m-%d")
        }]
        push_metric_event(metrics, "ETB Creation Metrics")
    def init(self):
        start_time_sec = int(round(time.time()))
        print('[START] Landing Page!')
        self.current_time = date.today()
        get_tenant_info(
            result_loc_=self.data_store_location.joinpath('textbook_reports'),
            org_search_=self.org_search,
            date_=self.current_time)

        self.generate_report()
        print('[SUCCESS] Landing Page!')

        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [{
            "metric": "timeTakenSecs",
            "value": time_taken
        }, {
            "metric": "date",
            "value": self.current_time.strftime("%Y-%m-%d")
        }]
        push_metric_event(metrics, "Landing Page")
    def init(self):
        start_time_sec = int(round(time.time()))
        print("START:CMO Dashboard")
        data_store_location = self.data_store_location.joinpath('portal_dashboards')
        data_store_location.mkdir(exist_ok=True)
        analysis_date = datetime.strptime(self.execution_date, "%d/%m/%Y")
        data_store_location.joinpath('public').mkdir(exist_ok=True)
        get_data_from_blob(data_store_location.joinpath('overall', 'daily_metrics.csv'))
        self.data_wrangling(result_loc_=data_store_location.joinpath('overall', 'daily_metrics.csv'), date_=analysis_date)
        create_json(data_store_location.joinpath('public', 'cmo_dashboard.csv'), last_update=True)
        post_data_to_blob(data_store_location.joinpath('public', 'cmo_dashboard.csv'))
        get_tenant_info(result_loc_=data_store_location.parent.joinpath('textbook_reports'), org_search_=self.org_search,
                        date_=analysis_date)
        board_slug = pd.read_csv(
            data_store_location.parent.joinpath('textbook_reports', analysis_date.strftime('%Y-%m-%d'), 'tenant_info.csv'))
        slug_list = board_slug['slug'].unique().tolist()
        for slug in slug_list:
            try:
                get_data_from_blob(result_loc_=data_store_location.joinpath(slug, 'daily_metrics.csv'))
                self.data_wrangling(result_loc_=data_store_location.joinpath(slug, 'daily_metrics.csv'), date_=analysis_date)
                create_json(read_loc_=data_store_location.joinpath(slug, 'cmo_dashboard.csv'), last_update=True)
                post_data_to_blob(result_loc_=data_store_location.joinpath(slug, 'cmo_dashboard.csv'))
            except:
                pass
        print("END:CMO Dashboard")

        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [
            {
                "metric": "timeTakenSecs",
                "value": time_taken
            },
            {
                "metric": "date",
                "value": analysis_date.strftime("%Y-%m-%d")
            }
        ]
        push_metric_event(metrics, "CMO Dashboard")
Exemplo n.º 8
0
    def init(self):
        start_time_sec = int(round(time.time()))
        print("START:Content Creation")
        result_loc = self.data_store_location.joinpath('content_creation')
        execution_date = datetime.strptime(self.execution_date, "%d/%m/%Y")
        get_tenant_info(result_loc_=result_loc, org_search_=self.org_search, date_=execution_date)
        self.weekly_creation(result_loc_=result_loc, date_=execution_date, content_search_=self.content_search)
        self.overall_creation(result_loc_=result_loc, date_=execution_date, content_search_=self.content_search)
        self.combine_creation_reports(result_loc_=result_loc, date_=execution_date)
        print("END:Content Creation")

        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [
            {
                "metric": "timeTakenSecs",
                "value": time_taken
            },
            {
                "metric": "date",
                "value": execution_date.strftime("%Y-%m-%d")
            }
        ]
        push_metric_event(metrics, "Content Creation")
    def init(self):
        start_time_sec = int(round(time.time()))
        start_time = datetime.now()
        print("Started at: ", start_time.strftime('%Y-%m-%d %H:%M:%S'))
        findspark.init()
        execution_date = datetime.strptime(self.execution_date, "%d/%m/%Y")
        analysis_date = execution_date - timedelta(1)

        self.data_store_location.joinpath('tb_metadata').mkdir(exist_ok=True)
        self.data_store_location.joinpath('play').mkdir(exist_ok=True)
        self.data_store_location.joinpath('downloads').mkdir(exist_ok=True)
        self.data_store_location.joinpath('dialcode_scans').mkdir(
            exist_ok=True)
        self.data_store_location.joinpath('portal_dashboards').mkdir(
            exist_ok=True)
        self.data_store_location.joinpath('config').mkdir(exist_ok=True)
        get_data_from_blob(
            self.data_store_location.joinpath('config', 'diksha_config.json'))
        with open(
                self.data_store_location.joinpath('config',
                                                  'diksha_config.json'),
                'r') as f:
            self.config = json.loads(f.read())
        get_textbook_snapshot(
            result_loc_=self.data_store_location.joinpath('tb_metadata'),
            content_search_=self.content_search,
            content_hierarchy_=self.content_hierarchy,
            date_=analysis_date)
        print('[Success] Textbook Snapshot')
        get_tenant_info(
            result_loc_=self.data_store_location.joinpath('textbook_reports'),
            org_search_=self.org_search,
            date_=analysis_date)
        print('[Success] Tenant Info')
        self.app_and_plays(
            result_loc_=self.data_store_location.joinpath('play'),
            date_=analysis_date)
        print('[Success] App and Plays')
        self.dialscans(
            result_loc_=self.data_store_location.joinpath('dialcode_scans'),
            date_=analysis_date)
        print('[Success] DIAL Scans')
        self.downloads(
            result_loc_=self.data_store_location.joinpath('downloads'),
            date_=analysis_date)
        print('[Success] Downloads')
        self.daily_metrics(read_loc_=self.data_store_location,
                           date_=analysis_date)
        print('[Success] Daily metrics')
        end_time = datetime.now()
        print("Ended at: ", end_time.strftime('%Y-%m-%d %H:%M:%S'))
        print("Time taken: ", str(end_time - start_time))

        end_time_sec = int(round(time.time()))
        time_taken = end_time_sec - start_time_sec
        metrics = [{
            "metric": "timeTakenSecs",
            "value": time_taken
        }, {
            "metric": "date",
            "value": execution_date.strftime("%Y-%m-%d")
        }]
        push_metric_event(metrics, "Consumption Metrics")