Exemplo n.º 1
0
    arg.save_dir = "%s/outs/%s"%(os.getcwd(), arg.save_dir)
    if os.path.exists(arg.save_dir) is False:
            os.mkdir(arg.save_dir)
    
    logger = Logger(arg.save_dir)

    copyreg.pickle(torch.dtype, pickle_torch_dtype)

    os.environ["CUDA_VISIBLE_DEVICES"] = arg.gpus
    torch_device = torch.device("cuda")

    preprocess = preprocess.get_preprocess(arg.augment)

    train_loader = nucleusloader(f_path_train, arg.batch_size, transform=preprocess,
                                 cpus=arg.cpus,
                                 shuffle=True, drop_last=True)

    valid_loader = nucleusloader3(f_path_valid, batch_size=1, transform=None,
                                 cpus=arg.cpus, shuffle=False,
                                drop_last=True)


    if arg.model == "fusion":
        net = Fusionnet(arg.in_channel, arg.out_channel, arg.ngf, arg.clamp)
    elif arg.model == "unet":
        net = Unet3D(feature_scale=arg.feature_scale)
    elif arg.model == "unet_gh":
        ## "nets_1004_unet_glob_absloss_FRE_pw10_erode2_feat1_trans30"
        #net = Unet3D_glob2(feature_scale=arg.feature_scale, trans_feature=64)
        #net = Unet3D_glob(feature_scale=arg.feature_scale, trans_feature=64)
Exemplo n.º 2
0
                                erode=3,
                                backzero=backzero)

    model = CNNTrainer(arg,
                       net,
                       torch_device,
                       recon_loss=recon_loss,
                       val_loss=val_loss,
                       logger=logger)
    #model.load(filename="epoch[0402]_losssum[0.016887].pth.tar")
    model.load(filename="epoch[0493]_losssum[0.015393].pth.tar")

    ######phase 1######
    test_loader = nucleusloader(f_path_test + '/dataset1/exp0_fullsequence',
                                batch_size=1,
                                transform=None,
                                cpus=arg.cpus,
                                shuffle=False,
                                drop_last=True)
    model.test(test_loader, savedir='dataset1')

    ######phase 2######

    #listdir=os.listdir(f_path_test+'/dataset2')
    #for ld in listdir:
    #    if ld.find('2018')!=0:
    #        test_loader = nucleusloader(f_path_test+'/dataset2/'+ld, batch_size=1, transform=None,
    #                                cpus=arg.cpus, shuffle=False,
    #                                drop_last=True)
    #        model.test(test_loader,savedir='dataset2_'+ld)

#    for ld in listdir: