Exemplo n.º 1
0
def main():
    logger.info('------------Analysis SQuAD dataset--------------')
    logger.info('loading config file...')
    global_config = read_config()

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    train_context_len_cnt, train_context_len = dataset.gather_context_seq_len('train')
    dev_context_len_cnt, dev_context_len = dataset.gather_context_seq_len('dev')

    logging.info('train context length cnt: ' + str(train_context_len_cnt))
    logging.info('dev context length cnt: ' + str(dev_context_len_cnt))

    train_context_len.plot.scatter('length', 'cnt', title='train')
    dev_context_len.plot.scatter('length', 'cnt', title='dev')

    plt.show()
def main():
    logger.info('------------Analysis SQuAD dataset--------------')
    logger.info('loading config file...')
    global_config = read_config()

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    train_context_len_cnt, train_context_len = dataset.gather_context_seq_len('train')
    dev_context_len_cnt, dev_context_len = dataset.gather_context_seq_len('dev')

    train_answer_len = dataset.gather_answer_seq_len('train', max_len=9)
    dev_answer_len = dataset.gather_answer_seq_len('dev', max_len=9)

    logging.info('train context length cnt: ' + str(train_context_len_cnt))
    logging.info('dev context length cnt: ' + str(dev_context_len_cnt))

    sns.set()
    train_context_len.plot.scatter('length', 'cnt', title='train')
    plt.xlabel('passage length')
    dev_context_len.plot.scatter('length', 'cnt', title='dev')
    plt.xlabel('passage length')

    train_answer_len.plot.line('length', 'cnt', marker='o', title='train')
    plt.xticks(range(len(train_answer_len['length'])), train_answer_len['length'])
    plt.xlabel('answer length')

    dev_answer_len.plot.line('length', 'cnt', marker='o', title='dev')
    plt.xticks(range(len(dev_answer_len['length'])), dev_answer_len['length'])
    plt.xlabel('answer length')

    plt.show()
Exemplo n.º 3
0
def main(config_path):
    logger.info('------------Match-LSTM Train--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['model']['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['train']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model = MatchLSTMModel(global_config).to(device)
    criterion = MyNLLLoss()

    # optimizer
    optimizer_choose = global_config['train']['optimizer']
    optimizer_lr = global_config['train']['learning_rate']
    optimizer_param = filter(lambda p: p.requires_grad, model.parameters())

    if optimizer_choose == 'adamax':
        optimizer = optim.Adamax(optimizer_param)
    elif optimizer_choose == 'adadelta':
        optimizer = optim.Adadelta(optimizer_param)
    elif optimizer_choose == 'adam':
        optimizer = optim.Adam(optimizer_param)
    elif optimizer_choose == 'sgd':
        optimizer = optim.SGD(optimizer_param,
                              lr=optimizer_lr)
    else:
        raise ValueError('optimizer "%s" in config file not recoginized' % optimizer_choose)

    # check if exist model weight
    weight_path = global_config['data']['model_path']
    if os.path.exists(weight_path):
        logger.info('loading existing weight...')
        weight = torch.load(weight_path, map_location=lambda storage, loc: storage)
        if enable_cuda:
            weight = torch.load(weight_path, map_location=lambda storage, loc: storage.cuda())
        # weight = pop_dict_keys(weight, ['pointer', 'init_ptr_hidden'])  # partial initial weight
        model.load_state_dict(weight, strict=False)

    # training arguments
    logger.info('start training...')
    train_batch_size = global_config['train']['batch_size']
    valid_batch_size = global_config['train']['valid_batch_size']

    # batch_train_data = dataset.get_dataloader_train(train_batch_size)
    # batch_dev_data = dataset.get_dataloader_dev(valid_batch_size)
    batch_train_data = list(dataset.get_batch_train(train_batch_size))
    batch_dev_data = list(dataset.get_batch_dev(valid_batch_size))

    clip_grad_max = global_config['train']['clip_grad_norm']
    enable_char = global_config['model']['encoder']['enable_char']

    best_valid_f1 = None
    # every epoch
    for epoch in range(global_config['train']['epoch']):
        # train
        model.train()  # set training = True, make sure right dropout
        sum_loss = train_on_model(model=model,
                                  criterion=criterion,
                                  optimizer=optimizer,
                                  batch_data=batch_train_data,
                                  epoch=epoch,
                                  clip_grad_max=clip_grad_max,
                                  device=device,
                                  enable_char=enable_char,
                                  batch_char_func=dataset.gen_batch_with_char)
        logger.info('epoch=%d, sum_loss=%.5f' % (epoch, sum_loss))

        # evaluate
        with torch.no_grad():
            model.eval()  # let training = False, make sure right dropout
            valid_score_em, valid_score_f1, valid_loss = eval_on_model(model=model,
                                                                       criterion=criterion,
                                                                       batch_data=batch_dev_data,
                                                                       epoch=epoch,
                                                                       device=device,
                                                                       enable_char=enable_char,
                                                                       batch_char_func=dataset.gen_batch_with_char)
        logger.info("epoch=%d, ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" %
                    (epoch, valid_score_em, valid_score_f1, valid_loss))

        # save model when best f1 score
        if best_valid_f1 is None or valid_score_f1 > best_valid_f1:
            save_model(model,
                       epoch=epoch,
                       model_weight_path=global_config['data']['model_path'],
                       checkpoint_path=global_config['data']['checkpoint_path'])
            logger.info("saving model weight on epoch=%d" % epoch)
            best_valid_f1 = valid_score_f1

    logger.info('finished.')
Exemplo n.º 4
0
def train(config_path):
    logger.info('------------MODEL TRAIN--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['train']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model_config = read_config('config/base_model.yaml')
        model = BaseModel(dataset_h5_path,
                          model_config)
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path)
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' % model_choose)

    model = model.to(device)
    criterion = MyNLLLoss()

    # optimizer
    optimizer_choose = global_config['train']['optimizer']
    optimizer_lr = global_config['train']['learning_rate']
    optimizer_param = filter(lambda p: p.requires_grad, model.parameters())

    if optimizer_choose == 'adamax':
        optimizer = optim.Adamax(optimizer_param)
    elif optimizer_choose == 'adadelta':
        optimizer = optim.Adadelta(optimizer_param)
    elif optimizer_choose == 'adam':
        optimizer = optim.Adam(optimizer_param)
    elif optimizer_choose == 'sgd':
        optimizer = optim.SGD(optimizer_param,
                              lr=optimizer_lr)
    else:
        raise ValueError('optimizer "%s" in config file not recoginized' % optimizer_choose)

    # check if exist model weight
    weight_path = global_config['data']['model_path']
    if os.path.exists(weight_path):
        logger.info('loading existing weight...')
        weight = torch.load(weight_path, map_location=lambda storage, loc: storage)
        if enable_cuda:
            weight = torch.load(weight_path, map_location=lambda storage, loc: storage.cuda())
        # weight = pop_dict_keys(weight, ['pointer', 'init_ptr_hidden'])  # partial initial weight
        model.load_state_dict(weight, strict=False)

    # training arguments
    logger.info('start training...')
    train_batch_size = global_config['train']['batch_size']
    valid_batch_size = global_config['train']['valid_batch_size']

    num_workers = global_config['global']['num_data_workers']
    batch_train_data = dataset.get_dataloader_train(train_batch_size, num_workers)
    batch_dev_data = dataset.get_dataloader_dev(valid_batch_size, num_workers)

    clip_grad_max = global_config['train']['clip_grad_norm']

    best_avg = 0.
    # every epoch
    for epoch in range(global_config['train']['epoch']):
        # train
        model.train()  # set training = True, make sure right dropout
        sum_loss = train_on_model(model=model,
                                  criterion=criterion,
                                  optimizer=optimizer,
                                  batch_data=batch_train_data,
                                  epoch=epoch,
                                  clip_grad_max=clip_grad_max,
                                  device=device)
        logger.info('epoch=%d, sum_loss=%.5f' % (epoch, sum_loss))

        # evaluate
        with torch.no_grad():
            model.eval()  # let training = False, make sure right dropout
            valid_score_em, valid_score_f1, valid_loss = eval_on_model(model=model,
                                                                       criterion=criterion,
                                                                       batch_data=batch_dev_data,
                                                                       epoch=epoch,
                                                                       device=device)
            valid_avg = (valid_score_em + valid_score_f1) / 2
        logger.info("epoch=%d, ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" %
                    (epoch, valid_score_em, valid_score_f1, valid_loss))

        # save model when best avg score
        if valid_avg > best_avg:
            save_model(model,
                       epoch=epoch,
                       model_weight_path=global_config['data']['model_path'],
                       checkpoint_path=global_config['data']['checkpoint_path'])
            logger.info("saving model weight on epoch=%d" % epoch)
            best_avg = valid_avg

    logger.info('finished.')
Exemplo n.º 5
0
def test(config_path, out_path):
    logger.info('------------MODEL PREDICT--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    #set default gpu
    os.environ["CUDA_VISIBLE_DEVICES"] = str(global_config['train']["gpu_id"])

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError(
            "CUDA is not abaliable, please unable CUDA in config file")

    torch.set_grad_enabled(
        False)  # make sure all tensors below have require_grad=False,

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model_config = read_config('config/base_model.yaml')
        model = BaseModel(dataset_h5_path, model_config)
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path,
                              global_config['preprocess']['use_domain_tag'])
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' %
                         model_choose)

    model = model.to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(
        model_weight_path
    ), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path,
                        map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path,
                            map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    batch_size = global_config['test']['batch_size']

    num_workers = global_config['global']['num_data_workers']

    if 'test_path' not in global_config['data']['dataset']:
        batch_test_data = dataset.get_dataloader_dev(batch_size, num_workers)
    else:
        batch_test_data = dataset.get_dataloader_test(batch_size, num_workers)

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(
            model=model,
            criterion=criterion,
            batch_data=batch_test_data,
            epoch=None,
            device=device)
        logger.info(
            "test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" %
            (score_em, score_f1, sum_loss))
    else:
        #context_right_space = dataset.get_all_ct_right_space_dev()
        context_right_space = dataset.get_all_ct_right_space_test()
        predict_ans = predict_on_model(
            model=model,
            batch_data=batch_test_data,
            device=device,
            id_to_word_func=dataset.sentence_id2word,
            right_space=context_right_space)
        #samples_id = dataset.get_all_samples_id_dev()
        samples_id = dataset.get_all_samples_id_test()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')
Exemplo n.º 6
0
    def __init__(self, config_file="/mnt/sdb/cjm/Match-LSTM/config/id19.yaml"):
        logger.info('------------MODEL TEST INPUT--------------')
        logger.info('loading config file...')
        #self.global_config = read_config("config/id19.yaml")
        self.global_config = read_config(config_file)

        # set random seed
        seed = self.global_config['global']['random_seed']
        torch.manual_seed(seed)

        torch.set_grad_enabled(
            False)  # make sure all tensors below have require_grad=False

        # set default gpu
        os.environ["CUDA_VISIBLE_DEVICES"] = str(
            self.global_config['test']["gpu_id"])

        enable_cuda = self.global_config['test']['enable_cuda']
        self.device = torch.device("cuda" if enable_cuda else "cpu")
        if torch.cuda.is_available() and not enable_cuda:
            logger.warning(
                "CUDA is avaliable, you can enable CUDA in config file")
        elif not torch.cuda.is_available() and enable_cuda:
            raise ValueError(
                "CUDA is not abaliable, please unable CUDA in config file")

        logger.info('reading squad dataset...')
        self.dataset = SquadDataset(self.global_config)

        logger.info('constructing model...')
        model_choose = self.global_config['global']['model']
        dataset_h5_path = self.global_config['data']['dataset_h5']
        if model_choose == 'base':
            model = BaseModel(
                dataset_h5_path,
                model_config=read_config('config/base_model.yaml'))
        elif model_choose == 'match-lstm':
            model = MatchLSTM(dataset_h5_path)
        elif model_choose == 'match-lstm+':
            model = MatchLSTMPlus(
                dataset_h5_path,
                self.global_config['preprocess']['use_domain_tag'])
        elif model_choose == 'r-net':
            model = RNet(dataset_h5_path)
        elif model_choose == 'm-reader':
            model = MReader(dataset_h5_path)
        else:
            raise ValueError('model "%s" in config file not recoginized' %
                             model_choose)
        model = model.to(self.device)
        model.eval()  # let training = False, make sure right dropout
        logging.info('model parameters count: %d' % count_parameters(model))

        # load model weight
        logger.info('loading model weight...')
        model_weight_path = self.global_config['data']['model_path']
        is_exist_model_weight = os.path.exists(model_weight_path)
        assert is_exist_model_weight, "not found model weight file on '%s'" % model_weight_path

        weight = torch.load(model_weight_path,
                            map_location=lambda storage, loc: storage)
        if enable_cuda:
            weight = torch.load(
                model_weight_path,
                map_location=lambda storage, loc: storage.cuda())
        model.load_state_dict(weight, strict=False)
        self.model = model

        self.nlp = spacy.load('en')
        self.metadata = {
            k: v.tolist()
            for k, v in self.dataset.meta_data.items()
        }
Exemplo n.º 7
0
class mrc:
    def __init__(self, config_file="/mnt/sdb/cjm/Match-LSTM/config/id19.yaml"):
        logger.info('------------MODEL TEST INPUT--------------')
        logger.info('loading config file...')
        #self.global_config = read_config("config/id19.yaml")
        self.global_config = read_config(config_file)

        # set random seed
        seed = self.global_config['global']['random_seed']
        torch.manual_seed(seed)

        torch.set_grad_enabled(
            False)  # make sure all tensors below have require_grad=False

        # set default gpu
        os.environ["CUDA_VISIBLE_DEVICES"] = str(
            self.global_config['test']["gpu_id"])

        enable_cuda = self.global_config['test']['enable_cuda']
        self.device = torch.device("cuda" if enable_cuda else "cpu")
        if torch.cuda.is_available() and not enable_cuda:
            logger.warning(
                "CUDA is avaliable, you can enable CUDA in config file")
        elif not torch.cuda.is_available() and enable_cuda:
            raise ValueError(
                "CUDA is not abaliable, please unable CUDA in config file")

        logger.info('reading squad dataset...')
        self.dataset = SquadDataset(self.global_config)

        logger.info('constructing model...')
        model_choose = self.global_config['global']['model']
        dataset_h5_path = self.global_config['data']['dataset_h5']
        if model_choose == 'base':
            model = BaseModel(
                dataset_h5_path,
                model_config=read_config('config/base_model.yaml'))
        elif model_choose == 'match-lstm':
            model = MatchLSTM(dataset_h5_path)
        elif model_choose == 'match-lstm+':
            model = MatchLSTMPlus(
                dataset_h5_path,
                self.global_config['preprocess']['use_domain_tag'])
        elif model_choose == 'r-net':
            model = RNet(dataset_h5_path)
        elif model_choose == 'm-reader':
            model = MReader(dataset_h5_path)
        else:
            raise ValueError('model "%s" in config file not recoginized' %
                             model_choose)
        model = model.to(self.device)
        model.eval()  # let training = False, make sure right dropout
        logging.info('model parameters count: %d' % count_parameters(model))

        # load model weight
        logger.info('loading model weight...')
        model_weight_path = self.global_config['data']['model_path']
        is_exist_model_weight = os.path.exists(model_weight_path)
        assert is_exist_model_weight, "not found model weight file on '%s'" % model_weight_path

        weight = torch.load(model_weight_path,
                            map_location=lambda storage, loc: storage)
        if enable_cuda:
            weight = torch.load(
                model_weight_path,
                map_location=lambda storage, loc: storage.cuda())
        model.load_state_dict(weight, strict=False)
        self.model = model

        self.nlp = spacy.load('en')
        self.metadata = {
            k: v.tolist()
            for k, v in self.dataset.meta_data.items()
        }

    def mrcqa_batch(self, contexts, question, single_question=True):
        if single_question:
            questions = []
            for i in range(len(contexts)):
                questions.append(question)
            data_nopad = self.build_data(contexts, questions)
        else:
            data_nopad = self.build_data(contexts, question)
        data_pad = {
            'context':
            self.dict2array(data_nopad['context']),
            'question':
            self.dict2array(data_nopad['question']),
            'answer_range':
            pad_sequences(data_nopad['answer_range'], padding='post',
                          value=-1),
            'samples_id':
            np.array(data_nopad['samples_id'])
        }
        batch_data = self.dataset.get_input_dataloader(
            self.global_config['test']['batch_size'],
            self.global_config['global']['num_data_workers'],
            shuffle=False,
            input_data=data_pad)
        # batch_data = dataset.get_dataloader_test(32, 5)

        batch_cnt = len(batch_data)
        answer = []

        cdict = data_pad['context']
        right_space = cdict['right_space']

        cnt = 0
        for bnum, batch in enumerate(batch_data):
            batch = [x.to(self.device) if x is not None else x for x in batch]
            bat_context = batch[0]
            bat_answer_range = batch[-1]

            # forward
            batch_input = batch[:len(batch) - 1]
            _, tmp_ans_range, _ = self.model.forward(*batch_input)

            tmp_context_ans = zip(bat_context.cpu().data.numpy(),
                                  tmp_ans_range.cpu().data.numpy())

            # generate initial answer text
            i = 0
            for c, a in tmp_context_ans:
                cur_no = cnt + i
                tmp_ans = self.dataset.sentence_id2word(c[a[0]:(a[1] + 1)])
                cur_space = right_space[cur_no][a[0]:(a[1] + 1)]

                cur_ans = ''
                for j, word in enumerate(tmp_ans):
                    cur_ans += word
                    if cur_space[j]:
                        cur_ans += ' '
                answer.append(cur_ans.strip())
                i += 1
            cnt += i
            logging.info('batch=%d/%d' % (bnum, batch_cnt))

            # manual release memory, todo: really effect?
            del bat_context, bat_answer_range, batch, batch_input
            del tmp_ans_range
            # torch.cuda.empty_cache()
        return answer

    def build_data(self, contexts, question):
        contexts_ids = []
        questions_ids = []
        answers_range_wid = [
        ]  # each answer use the [start,end] representation, all the answer horizontal concat
        samples_id = []
        cnt = 0
        for i, context in enumerate(contexts):
            context_doc = DocText(self.nlp, context,
                                  self.global_config['preprocess'])
            question_doc = DocText(self.nlp, question[i],
                                   self.global_config['preprocess'])

            context_doc.update_em(question_doc)
            question_doc.update_em(context_doc)

            context_f = context_doc.to_id_dict(self.metadata)
            question_f = question_doc.to_id_dict(self.metadata)

            contexts_ids.append(context_f)
            questions_ids.append(question_f)
            samples_id.append(str(cnt))
            answers_range_wid.append([0, 1])
            cnt += 1
        return {
            'context': contexts_ids,
            'question': questions_ids,
            'answer_range': answers_range_wid,
            'samples_id': samples_id
        }

    def dict2array(self, data_doc, use_domain_tag=False):
        """
        transform dict to numpy array
        :param data_doc: [{'token': [], 'pos': [], 'ent': [], 'em': [], 'em_lemma': [], 'right_space': [], 'domain_tag':[]]
        :return:
        """
        data = {
            'token': [],
            'pos': [],
            'ent': [],
            'em': [],
            'em_lemma': [],
            'right_space': []
        }
        if use_domain_tag:
            data['domain_tag'] = []
        max_len = 0

        for ele in data_doc:
            assert ele.keys() == data.keys()

            if len(ele['token']) > max_len:
                max_len = len(ele['token'])

            for k in ele.keys():
                if len(ele[k]) > 0:
                    data[k].append(ele[k])

        for k in data.keys():
            if len(data[k]) > 0:
                data[k] = pad_sequences(data[k],
                                        maxlen=max_len,
                                        padding='post',
                                        value=0)

        return data
Exemplo n.º 8
0
def main():
    logger.info('------------MODEL TEST INPUT--------------')
    logger.info('loading config file...')
    global_config = read_config()

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    torch.set_grad_enabled(False)  # make sure all tensors below have require_grad=False

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model = BaseModel(dataset_h5_path,
                          model_config=read_config('config/base_model.yaml'))
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path)
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' % model_choose)

    model.eval()  # let training = False, make sure right dropout
    logging.info('model parameters count: %d' % count_parameters(model))

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    is_exist_model_weight = os.path.exists(model_weight_path)
    assert is_exist_model_weight, "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage)
    model.load_state_dict(weight, strict=False)

    # manual input qa
    context = "In 1870, Tesla moved to Karlovac, to attend school at the Higher Real Gymnasium, where he was " \
             "profoundly influenced by a math teacher Martin Sekuli\u0107.:32 The classes were held in German, " \
             "as it was a school within the Austro-Hungarian Military Frontier. Tesla was able to perform integral " \
             "calculus in his head, which prompted his teachers to believe that he was cheating. He finished a " \
             "four-year term in three years, graduating in 1873.:33 "
    question1 = "What language were classes held in at Tesla's school?"
    answer1 = ["German"]

    question2 = "Who was Tesla influenced by while in school?"
    answer2 = ["Martin Sekuli\u0107"]

    question3 = "Why did Tesla go to Karlovac?"
    answer3 = ["attend school at the Higher Real Gymnasium", 'to attend school']

    # change here to select questions
    question = question1
    answer = answer1[0]

    # preprocess
    nlp = spacy.load('en')
    context_doc = DocText(nlp, context, global_config['preprocess'])
    question_doc = DocText(nlp, question, global_config['preprocess'])
    context_doc.update_em(question_doc)
    question_doc.update_em(context_doc)

    context_token = context_doc.token
    question_token = question_doc.token

    context_id_char = to_long_tensor(dataset.sentence_char2id(context_token))
    question_id_char = to_long_tensor(dataset.sentence_char2id(question_token))

    context_id, context_f = context_doc.to_id(dataset.meta_data)
    question_id, question_f = question_doc.to_id(dataset.meta_data)

    bat_input = [context_id, question_id, context_id_char, question_id_char, context_f, question_f]
    bat_input = [x.unsqueeze(0) if x is not None else x for x in bat_input]

    out_ans_prop, out_ans_range, vis_param = model.forward(*bat_input)
    out_ans_range = out_ans_range.numpy()

    start = out_ans_range[0][0]
    end = out_ans_range[0][1] + 1

    out_answer_id = context_id[start:end]
    out_answer = dataset.sentence_id2word(out_answer_id)

    logging.info('Predict Answer: ' + ' '.join(out_answer))

    # to show on visdom
    s = 0
    e = 48

    x_left = vis_param['match']['left']['alpha'][0, :, s:e].numpy()
    x_right = vis_param['match']['right']['alpha'][0, :, s:e].numpy()

    x_left_gated = vis_param['match']['left']['gated'][0, :, s:e].numpy()
    x_right_gated = vis_param['match']['right']['gated'][0, :, s:e].numpy()

    draw_heatmap_sea(x_left,
                     xlabels=context_token[s:e],
                     ylabels=question_token,
                     answer=answer,
                     save_path='data/test-left.png',
                     bottom=0.45)
    draw_heatmap_sea(x_right,
                     xlabels=context_token[s:e],
                     ylabels=question_token,
                     answer=answer,
                     save_path='data/test-right.png',
                     bottom=0.45)

    enable_self_match = False
    if enable_self_match:
        x_self_left = vis_param['self']['left']['alpha'][0, s:e, s:e].numpy()
        x_self_right = vis_param['self']['right']['alpha'][0, s:e, s:e].numpy()

        draw_heatmap_sea(x_self_left,
                         xlabels=context_token[s:e],
                         ylabels=context_token[s:e],
                         answer=answer,
                         save_path='data/test-self-left.png',
                         inches=(11, 11),
                         bottom=0.2)
        draw_heatmap_sea(x_self_right,
                         xlabels=context_token[s:e],
                         ylabels=context_token[s:e],
                         answer=answer,
                         save_path='data/test-self-right.png',
                         inches=(11, 11),
                         bottom=0.2)
Exemplo n.º 9
0
def main():
    logger.info('------------MODEL TEST INPUT--------------')
    logger.info('loading config file...')
    global_config = read_config()

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    torch.set_grad_enabled(
        False)  # make sure all tensors below have require_grad=False

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model = BaseModel(dataset_h5_path,
                          model_config=read_config('config/base_model.yaml'))
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path)
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' %
                         model_choose)

    model.eval()  # let training = False, make sure right dropout
    logging.info('model parameters count: %d' % count_parameters(model))

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    is_exist_model_weight = os.path.exists(model_weight_path)
    assert is_exist_model_weight, "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path,
                        map_location=lambda storage, loc: storage)
    model.load_state_dict(weight, strict=False)

    # manual input qa
    context = "In 1870, Tesla moved to Karlovac, to attend school at the Higher Real Gymnasium, where he was " \
             "profoundly influenced by a math teacher Martin Sekuli\u0107.:32 The classes were held in German, " \
             "as it was a school within the Austro-Hungarian Military Frontier. Tesla was able to perform integral " \
             "calculus in his head, which prompted his teachers to believe that he was cheating. He finished a " \
             "four-year term in three years, graduating in 1873.:33 "
    question1 = "What language were classes held in at Tesla's school?"
    answer1 = ["German"]

    question2 = "Who was Tesla influenced by while in school?"
    answer2 = ["Martin Sekuli\u0107"]

    question3 = "Why did Tesla go to Karlovac?"
    answer3 = [
        "attend school at the Higher Real Gymnasium", 'to attend school'
    ]

    # change here to select questions
    question = question1
    answer = answer1[0]

    # preprocess
    nlp = spacy.load('en')
    context_doc = DocText(nlp, context, global_config['preprocess'])
    question_doc = DocText(nlp, question, global_config['preprocess'])
    context_doc.update_em(question_doc)
    question_doc.update_em(context_doc)

    context_token = context_doc.token
    question_token = question_doc.token

    context_id_char = to_long_tensor(dataset.sentence_char2id(context_token))
    question_id_char = to_long_tensor(dataset.sentence_char2id(question_token))

    context_id, context_f = context_doc.to_id(dataset.meta_data)
    question_id, question_f = question_doc.to_id(dataset.meta_data)

    bat_input = [
        context_id, question_id, context_id_char, question_id_char, context_f,
        question_f
    ]
    bat_input = [x.unsqueeze(0) if x is not None else x for x in bat_input]

    out_ans_prop, out_ans_range, vis_param = model.forward(*bat_input)
    out_ans_range = out_ans_range.numpy()

    start = out_ans_range[0][0]
    end = out_ans_range[0][1] + 1

    out_answer_id = context_id[start:end]
    out_answer = dataset.sentence_id2word(out_answer_id)

    logging.info('Predict Answer: ' + ' '.join(out_answer))

    # to show on visdom
    s = 0
    e = 48

    x_left = vis_param['match']['left']['alpha'][0, :, s:e].numpy()
    x_right = vis_param['match']['right']['alpha'][0, :, s:e].numpy()

    x_left_gated = vis_param['match']['left']['gated'][0, :, s:e].numpy()
    x_right_gated = vis_param['match']['right']['gated'][0, :, s:e].numpy()

    draw_heatmap_sea(x_left,
                     xlabels=context_token[s:e],
                     ylabels=question_token,
                     answer=answer,
                     save_path='data/test-left.png',
                     bottom=0.45)
    draw_heatmap_sea(x_right,
                     xlabels=context_token[s:e],
                     ylabels=question_token,
                     answer=answer,
                     save_path='data/test-right.png',
                     bottom=0.45)

    enable_self_match = False
    if enable_self_match:
        x_self_left = vis_param['self']['left']['alpha'][0, s:e, s:e].numpy()
        x_self_right = vis_param['self']['right']['alpha'][0, s:e, s:e].numpy()

        draw_heatmap_sea(x_self_left,
                         xlabels=context_token[s:e],
                         ylabels=context_token[s:e],
                         answer=answer,
                         save_path='data/test-self-left.png',
                         inches=(11, 11),
                         bottom=0.2)
        draw_heatmap_sea(x_self_right,
                         xlabels=context_token[s:e],
                         ylabels=context_token[s:e],
                         answer=answer,
                         save_path='data/test-self-right.png',
                         inches=(11, 11),
                         bottom=0.2)
Exemplo n.º 10
0
def train(config_path):
    logger.info('------------MODEL TRAIN--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    #set default gpu
    os.environ["CUDA_VISIBLE_DEVICES"] = str(global_config['train']["gpu_id"])

    enable_cuda = global_config['train']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError(
            "CUDA is not abaliable, please unable CUDA in config file")

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model_config = read_config('config/base_model.yaml')
        model = BaseModel(dataset_h5_path, model_config)
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path,
                              global_config['preprocess']['use_domain_tag'])
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' %
                         model_choose)

    model = model.to(device)
    criterion = MyNLLLoss()

    # optimizer
    optimizer_choose = global_config['train']['optimizer']
    optimizer_lr = global_config['train']['learning_rate']
    optimizer_param = filter(lambda p: p.requires_grad, model.parameters())

    if optimizer_choose == 'adamax':
        optimizer = optim.Adamax(optimizer_param)
    elif optimizer_choose == 'adadelta':
        optimizer = optim.Adadelta(optimizer_param)
    elif optimizer_choose == 'adam':
        optimizer = optim.Adam(optimizer_param)
    elif optimizer_choose == 'sgd':
        optimizer = optim.SGD(optimizer_param, lr=optimizer_lr)
    else:
        raise ValueError('optimizer "%s" in config file not recoginized' %
                         optimizer_choose)

    # check if exist model weight
    weight_path = global_config['data']['model_path']
    if os.path.exists(weight_path):
        logger.info('loading existing weight...')
        weight = torch.load(weight_path,
                            map_location=lambda storage, loc: storage)
        if enable_cuda:
            weight = torch.load(
                weight_path, map_location=lambda storage, loc: storage.cuda())
        # weight = pop_dict_keys(weight, ['pointer', 'init_ptr_hidden'])  # partial initial weight
        model.load_state_dict(weight, strict=False)

    # training arguments
    logger.info('start training...')
    train_batch_size = global_config['train']['batch_size']
    valid_batch_size = global_config['train']['valid_batch_size']

    num_workers = global_config['global']['num_data_workers']
    batch_train_data = dataset.get_dataloader_train(train_batch_size,
                                                    num_workers)
    batch_dev_data = dataset.get_dataloader_dev(valid_batch_size, num_workers)

    clip_grad_max = global_config['train']['clip_grad_norm']

    best_avg = 0.
    # every epoch
    for epoch in range(global_config['train']['epoch']):
        # train
        model.train()  # set training = True, make sure right dropout
        sum_loss = train_on_model(model=model,
                                  criterion=criterion,
                                  optimizer=optimizer,
                                  batch_data=batch_train_data,
                                  epoch=epoch,
                                  clip_grad_max=clip_grad_max,
                                  device=device)
        logger.info('epoch=%d, sum_loss=%.5f' % (epoch, sum_loss))

        # evaluate
        with torch.no_grad():
            model.eval()  # let training = False, make sure right dropout
            valid_score_em, valid_score_f1, valid_loss = eval_on_model(
                model=model,
                criterion=criterion,
                batch_data=batch_dev_data,
                epoch=epoch,
                device=device)
            valid_avg = (valid_score_em + valid_score_f1) / 2
        logger.info(
            "epoch=%d, ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" %
            (epoch, valid_score_em, valid_score_f1, valid_loss))

        # save model when best avg score
        if valid_avg > best_avg:
            save_model(
                model,
                epoch=epoch,
                model_weight_path=global_config['data']['model_path'],
                checkpoint_path=global_config['data']['checkpoint_path'])
            logger.info("saving model weight on epoch=%d" % epoch)
            best_avg = valid_avg
    logger.info('pretraining finished.')

    if global_config['global']['finetune']:
        batch_train_data = dataset.get_dataloader_train2(
            train_batch_size, num_workers)
        batch_dev_data = dataset.get_dataloader_dev2(valid_batch_size,
                                                     num_workers)
        for epoch in range(global_config['train']['finetune_epoch']):
            # train
            model.train()  # set training = True, make sure right dropout
            sum_loss = train_on_model(model=model,
                                      criterion=criterion,
                                      optimizer=optimizer,
                                      batch_data=batch_train_data,
                                      epoch=epoch,
                                      clip_grad_max=clip_grad_max,
                                      device=device)
            logger.info('finetune epoch=%d, sum_loss=%.5f' % (epoch, sum_loss))

            # evaluate
            with torch.no_grad():
                model.eval()  # let training = False, make sure right dropout
                valid_score_em, valid_score_f1, valid_loss = eval_on_model(
                    model=model,
                    criterion=criterion,
                    batch_data=batch_dev_data,
                    epoch=epoch,
                    device=device)
                valid_avg = (valid_score_em + valid_score_f1) / 2
            logger.info(
                "finetune epoch=%d, ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f"
                % (epoch, valid_score_em, valid_score_f1, valid_loss))

            # save model when best avg score
            if valid_avg > best_avg:
                save_model(
                    model,
                    epoch=epoch,
                    model_weight_path=global_config['data']['model_path'],
                    checkpoint_path=global_config['data']['checkpoint_path'])
                logger.info("saving model weight on epoch=%d" % epoch)
                best_avg = valid_avg

    if global_config['global']['finetune2']:
        batch_train_data = dataset.get_dataloader_train3(
            train_batch_size, num_workers)
        batch_dev_data = dataset.get_dataloader_dev3(valid_batch_size,
                                                     num_workers)
        for epoch in range(global_config['train']['finetune_epoch2']):
            # train
            model.train()  # set training = True, make sure right dropout
            sum_loss = train_on_model(model=model,
                                      criterion=criterion,
                                      optimizer=optimizer,
                                      batch_data=batch_train_data,
                                      epoch=epoch,
                                      clip_grad_max=clip_grad_max,
                                      device=device)
            logger.info('finetune2 epoch=%d, sum_loss=%.5f' %
                        (epoch, sum_loss))

            # evaluate
            with torch.no_grad():
                model.eval()  # let training = False, make sure right dropout
                valid_score_em, valid_score_f1, valid_loss = eval_on_model(
                    model=model,
                    criterion=criterion,
                    batch_data=batch_dev_data,
                    epoch=epoch,
                    device=device)
                valid_avg = (valid_score_em + valid_score_f1) / 2
            logger.info(
                "finetune2 epoch=%d, ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f"
                % (epoch, valid_score_em, valid_score_f1, valid_loss))

            # save model when best avg score
            if valid_avg > best_avg:
                save_model(
                    model,
                    epoch=epoch,
                    model_weight_path=global_config['data']['model_path'],
                    checkpoint_path=global_config['data']['checkpoint_path'])
                logger.info("saving model weight on epoch=%d" % epoch)
                best_avg = valid_avg

    logger.info('finished.')
Exemplo n.º 11
0
def main():
    logger.info('------------Match-LSTM TEST INPUT--------------')
    logger.info('loading config file...')
    global_config = read_config()

    # set random seed
    seed = global_config['model']['global']['random_seed']
    torch.manual_seed(seed)

    torch.no_grad()  # make sure all tensors below have require_grad=False

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model = MatchLSTMModel(global_config)
    model.eval()  # let training = False, make sure right dropout

    logging.info('model parameters count: %d' % count_parameters(model))

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    is_exist_model_weight = os.path.exists(model_weight_path)
    assert is_exist_model_weight, "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path,
                        map_location=lambda storage, loc: storage)
    model.load_state_dict(weight, strict=False)

    # manual input qa
    context = "In 1870, Tesla moved to Karlovac, to attend school at the Higher Real Gymnasium, where he was " \
             "profoundly influenced by a math teacher Martin Sekuli\u0107.:32 The classes were held in German, " \
             "as it was a school within the Austro-Hungarian Military Frontier. Tesla was able to perform integral " \
             "calculus in his head, which prompted his teachers to believe that he was cheating. He finished a " \
             "four-year term in three years, graduating in 1873.:33 "
    question1 = "What language were classes held in at Tesla's school?"
    answer1 = ["German"]

    question2 = "Who was Tesla influenced by while in school?"
    answer2 = ["Martin Sekuli\u0107"]

    question3 = "Why did Tesla go to Karlovac?"
    answer3 = [
        "attend school at the Higher Real Gymnasium", 'to attend school'
    ]

    # change here to select questions
    question = question1
    answer = answer1[0]

    # preprocess
    context_token = nltk.word_tokenize(context)
    question_token = nltk.word_tokenize(question)

    a = np.array(context_token)

    context_id = dataset.sentence_word2id(context_token)
    question_id = dataset.sentence_word2id(question_token)

    context_id_char = dataset.sentence_char2id(context_token)
    question_id_char = dataset.sentence_char2id(question_token)

    context_var, question_var, context_var_char, question_var_char = [
        to_long_tensor(x).unsqueeze(0)
        for x in [context_id, question_id, context_id_char, question_id_char]
    ]

    out_ans_prop, out_ans_range, vis_param = model.forward(
        context_var, question_var, context_var_char, question_var_char)
    out_ans_range = out_ans_range.cpu().data.numpy()

    start = out_ans_range[0][0]
    end = out_ans_range[0][1] + 1

    out_answer_id = context_id[start:end]
    out_answer = dataset.sentence_id2word(out_answer_id)

    logging.info('Predict Answer: ' + ' '.join(out_answer))

    # to show on visdom
    s = 0
    e = 48

    x_left = vis_param['match']['left'][0, :, s:e].cpu().data.numpy()
    x_right = vis_param['match']['right'][0, :, s:e].cpu().data.numpy()

    draw_heatmap_sea(x_left,
                     xlabels=context_token[s:e],
                     ylabels=question_token,
                     answer=answer,
                     save_path='data/test-left.png',
                     bottom=0.45)
    draw_heatmap_sea(x_right,
                     xlabels=context_token[s:e],
                     ylabels=question_token,
                     answer=answer,
                     save_path='data/test-right.png',
                     bottom=0.45)

    if global_config['model']['interaction']['enable_self_match']:
        x_self_left = vis_param['self']['left'][0, s:e, s:e].cpu().data.numpy()
        x_self_right = vis_param['self']['right'][0, s:e,
                                                  s:e].cpu().data.numpy()

        draw_heatmap_sea(x_self_left,
                         xlabels=context_token[s:e],
                         ylabels=context_token[s:e],
                         answer=answer,
                         save_path='data/test-self-left.png',
                         inches=(11, 11),
                         bottom=0.2)
        draw_heatmap_sea(x_self_right,
                         xlabels=context_token[s:e],
                         ylabels=context_token[s:e],
                         answer=answer,
                         save_path='data/test-self-right.png',
                         inches=(11, 11),
                         bottom=0.2)
Exemplo n.º 12
0
def main(config_path, out_path):
    logger.info('------------Match-LSTM Evaluate--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['model']['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    torch.no_grad()  # make sure all tensors below have require_grad=False

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model = MatchLSTMModel(global_config).to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(model_weight_path), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    enable_char = global_config['model']['encoder']['enable_char']
    batch_size = global_config['test']['batch_size']
    # batch_dev_data = dataset.get_dataloader_dev(batch_size)
    batch_dev_data = list(dataset.get_batch_dev(batch_size))

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(model=model,
                                                     criterion=criterion,
                                                     batch_data=batch_dev_data,
                                                     epoch=None,
                                                     device=device,
                                                     enable_char=enable_char,
                                                     batch_char_func=dataset.gen_batch_with_char)
        logger.info("test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" % (score_em, score_f1, sum_loss))
    else:
        predict_ans = predict_on_model(model=model,
                                       batch_data=batch_dev_data,
                                       device=device,
                                       enable_char=enable_char,
                                       batch_char_func=dataset.gen_batch_with_char,
                                       id_to_word_func=dataset.sentence_id2word)
        samples_id = dataset.get_all_samples_id_dev()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')
Exemplo n.º 13
0
def test(config_path, out_path):
    logger.info('------------MODEL PREDICT--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    torch.set_grad_enabled(False)  # make sure all tensors below have require_grad=False,

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model_config = read_config('config/base_model.yaml')
        model = BaseModel(dataset_h5_path,
                          model_config)
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path)
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' % model_choose)

    model = model.to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(model_weight_path), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    batch_size = global_config['test']['batch_size']

    num_workers = global_config['global']['num_data_workers']
    batch_dev_data = dataset.get_dataloader_dev(batch_size, num_workers)

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(model=model,
                                                     criterion=criterion,
                                                     batch_data=batch_dev_data,
                                                     epoch=None,
                                                     device=device)
        logger.info("test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" % (score_em, score_f1, sum_loss))
    else:
        context_right_space = dataset.get_all_ct_right_space_dev()
        predict_ans = predict_on_model(model=model,
                                       batch_data=batch_dev_data,
                                       device=device,
                                       id_to_word_func=dataset.sentence_id2word,
                                       right_space=context_right_space)
        samples_id = dataset.get_all_samples_id_dev()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')