Exemplo n.º 1
0
def pre_process(image):
    height, width = image.shape[0:2]
    inp_height, inp_width = 512, 512
    c = np.array([height / 2., width / 2.], dtype=np.float32)
    s = max(height, width) * 1.0
    trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
    inp_image = cv2.warpAffine(image,
                               trans_input, (inp_width, inp_height),
                               flags=cv2.INTER_LINEAR)

    mean = np.array(
        [0.5194416012442385, 0.5378052387430711, 0.533462090585746],
        dtype=np.float32).reshape(1, 1, 3)
    std = np.array(
        [0.3001546018824507, 0.28620901391179554, 0.3014112676161966],
        dtype=np.float32).reshape(1, 1, 3)

    inp_image = ((inp_image / 255. - mean) / std).astype(np.float32)

    images = inp_image.transpose(2, 0, 1).reshape(
        1, 3, inp_height, inp_width)  # 三维reshape到4维,(1,3,512,512)

    images = torch.from_numpy(images)
    meta = {
        'c': c,
        's': s,
        'out_height': inp_height // 4,
        'out_width': inp_width // 4
    }
    return images, meta
Exemplo n.º 2
0
def pre_process(image, image_size=224):
    height, width = image.shape[0:2]
    inp_height, inp_width = image_size, image_size
    c = np.array([width / 2.0, height / 2.0], dtype=np.float32)
    s = max(height, width) * 1.0
    trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
    inp_image = cv2.warpAffine(image,
                               trans_input, (inp_width, inp_height),
                               flags=cv2.INTER_LINEAR)

    # mean = np.array(
    #     [0.5194416012442385, 0.5378052387430711, 0.533462090585746], dtype=np.float32
    # ).reshape(1, 1, 3)
    # std = np.array(
    #     [0.3001546018824507, 0.28620901391179554, 0.3014112676161966], dtype=np.float32
    # ).reshape(1, 1, 3)

    mean = np.array([0.4803, 0.4641, 0.4476],
                    dtype=np.float32).reshape(1, 1, 3)
    std = np.array([0.1878, 0.1881, 0.1959], dtype=np.float32).reshape(1, 1, 3)

    inp_image = ((inp_image / 255.0 - mean) / std).astype(np.float32)
    # inp_image = (inp_image / 255.0).astype(np.float32)

    images = inp_image.transpose(2, 0, 1).reshape(
        1, 3, inp_height, inp_width)  # 三维reshape到4维,(1,3,512,512)
    # print(inp_image)

    images = torch.from_numpy(images)
    meta = {
        "c": c,
        "s": s,
        "out_height": inp_height // 4,
        "out_width": inp_width // 4
    }
    return images, meta
Exemplo n.º 3
0
def transform_preds(coords, center, scale, output_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale, 0, output_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords