def main(): allSong, targetList = dataset.main() allSong = np.array(allSong) targetList = np.array(targetList) allSong = listNormalizer(allSong) model(allSong, targetList)
def predictionSong(songUri: str): # Girilin uri "spotify:track:URI" şeklinde ise URI kısmını ayırmak için kullanılır. if songUri.find("spotify") != -1: songUri = songUri[14:] # yeni şarkının veri setine eklenmesi ve normalize edilmesi artistName, songName, songInfo = SpotifyConnection.getSongInfo(songUri) allSong, targetList = dataset.main() allSong.append(songInfo) allSong = np.array(allSong) allSong = allSong / allSong.max(axis=0) # Modelin hazırlanması model = readModelFromJSON() #veri setinden şarkının alınması ve tahmini mysong = allSong[-1:] predict = model.predict(mysong) print("*************HIT SONG PREDICTION*************") print("Song Name: " +songName) print("Artist Name:" +artistName) print("Hit Rate: %" + "%.2f" % (predict[0][0] * 100)) if predict >= 0.7: print("SONG IS HIT!") else: print("SONG IS NOT HIT!")
def main(): parser = argparse.ArgumentParser(description='PyTorch Kaggle') parser.add_argument('--jobtype', '-M', type=str, default='evaluate', help='what are you going to do on this function') parser.add_argument('--setting', '-S', type=str, default='setting1', help='which setting file are you going to use for training.') #parser.add_argument('--model', '-M', type=str, default='', help='') args = parser.parse_args() #cfg = setting.Config() cfg = cfgs.get(args.setting) if args.jobtype == 'preprocess': dataset.main(cfg) if args.jobtype == 'train': train.main(cfg) if args.jobtype == 'evaluate': evaluate.main(cfg)
def predictionSong(songUri: str, songNameLabel: Label, artistNameLabel: Label, hitRateLabel: Label, resultLabel: Label, decisionHitLabel: Label, decisionResult: Label, knnHitLabel: Label, knnResult: Label, svmHitLabel: Label, svmResult: Label, bayesHitLabel: Label, bayesResult: Label): if songUri.find("spotify") != -1: songUri = songUri[14:] # yeni şarkının veri setine eklenmesi ve normalize edilmesi artistName, songName, songInfo = SpotifyConnection.getSongInfo(songUri) allSong, targetList = dataset.main() allSong.append(songInfo) allSong = np.array(allSong) allSong = allSong / allSong.max(axis=0) # veri setinden şarkının alınması ve tahmini mysong = allSong[-1:] print("*************HIT SONG PREDICTION*************") print("Song Name: " + songName) print("Artist Name:" + artistName) songNameLabel['text'] = "ŞARKI İSMİ: " + songName artistNameLabel['text'] = "SANATÇI İSMİ: " + artistName predict, predictions, result = neuralPrediction(mysong) hitRateLabel['text'] = "POPÜLER OLMA İHTİMALİ: % " + "%.2f" % ( predict[0][0] * 100) + " " + str(predictions[0]) resultLabel['text'] = "SONUÇ: " + result print("Hit Rate: %" + "%.2f" % (predict[0][0] * 100)) predict, result = decisionTreePrediction(mysong) decisionHitLabel['text'] = "POPÜLERLİK : " + str(predict) decisionResult['text'] = "SONUÇ: " + result predict, result = knnPrediction(mysong) knnHitLabel['text'] = "POPÜLERLİK : " + str(predict) knnResult['text'] = "SONUÇ: " + result predict, result = svmPrediction(mysong) svmHitLabel['text'] = "POPÜLERLİK : " + str(predict) svmResult['text'] = "SONUÇ: " + result predict, result = bayesPrediction(mysong) bayesHitLabel['text'] = "POPÜLERLİK : " + str(predict) bayesResult['text'] = "SONUÇ: " + result
def predictionSong(): songUri = "spotify:track:1aaI0imelqLqye35922oMD" if songUri.find("spotify") != -1: songUri = songUri[14:] artistName, songName, songInfo = SpotifyConnection.getSongInfo(songUri) allSong, targetList = dataset.main() allSong.append(songInfo) allSong = np.array(allSong) allSong = allSong / allSong.max(axis=0) mySong = allSong[-1:] model = joblib.load('BNB.pkl', mmap_mode='r') y_pred = model.predict(mySong) print(y_pred) print("Sanatçı:" + artistName) print("Şarkı Adı:" + songName) if (y_pred == [0]): print("THIS SONG IS NOT HIT") else: print("THIS SONG IS HIT")