Exemplo n.º 1
0
def main(opt, generator):
    logger = logging.getLogger("logger")
    logger.setLevel(logging.DEBUG)
    handler1 = logging.StreamHandler()
    handler1.setFormatter(
        logging.Formatter("%(asctime)s %(levelname)8s %(message)s"))
    logger.addHandler(handler1)
    handler2 = logging.FileHandler(
        filename=os.path.join(opt.loadDir, "is.log"))
    handler2.setLevel(logging.INFO)
    handler2.setFormatter(logging.Formatter("%(message)s"))
    logger.addHandler(handler2)
    logger.info(opt)

    np.random.seed(seed=0)

    #calcurate real dataset IS
    if opt.calcRealIs:
        dataset, _ = makeDataloader(opt)
        IgnoreLabelDataset(dataset)
        if opt.dataset == 'mnist':
            calcIS = inception_score(IgnoreLabelDataset(dataset),
                                     cuda=cuda,
                                     batch_size=32,
                                     resize=True,
                                     expand=True)
        else:
            calcIS = inception_score(IgnoreLabelDataset(dataset),
                                     cuda=cuda,
                                     batch_size=32,
                                     resize=True)
        logger.info('real, ' + str(calcIS[0]))

    #calcurate fake dataset init IS
    calcIS = calcurateInceptionScore(opt, generator.cuda(), str(0))
    logger.info('0, ' + str(calcIS[0]))

    #calcurate fake dataset IS per iter
    for model_path in sorted(
            glob.glob(os.path.join(opt.loadDir, 'generator_*'))):
        name = os.path.basename(model_path)
        idx = name.replace('generator_model_', '')

        calcG = generator.cuda()
        calcG.load_state_dict(torch.load(model_path))

        if int(idx) > 0:
            calcIS = calcurateInceptionScore(opt, calcG, idx)
            logger.info(str(int(idx)) + ', ' + str(calcIS[0]))
Exemplo n.º 2
0
    'latent_dim': 128,
    'img_size': 32,
    'n_critic': 1,
    'clip_value': 0.01,
    'sample_inNoneterval': 100,
    'log_interval': 100,
    'modelsave_interval': 1,  #per epoch
    'dataset': 'mnist',
    'num_filters': 128,
    'saveDir': None,
    'resume': 0,
    'logIS': True,
    'loadDir': None
})

_, dataloader = dataset.makeDataloader(opt)

# Initialize generator and discriminator
#generator = models.NoiseGenerator2Dv6(opt)
#generator = models.MTNoiseGenerator2Dv6(opt)
generator = models.NoiseResGenerator2Dv1(opt,
                                         noise_layers.NoiseBasicBlock2Dv2,
                                         [2, 2, 2, 2, 1],
                                         level=0.1)
discriminator = naiveresnet.NoiseResNet32(naiveresnet.NoiseBasicBlock,
                                          [2, 2, 2, 2],
                                          nchannels=1,
                                          nfilters=opt.num_filters,
                                          nclasses=1,
                                          pool=2,
                                          level=0.1)