def test_xor(): """ This method will run the test on xor dataset. """ dg = xor() # Initialize a dataset creator training_data, training_labels = dg.query_data(samples=100) n = xor_net(training_data, training_labels) # This call should return a net object params = n.get_params( ) # This call should reaturn parameters of the model that are # fully trained. testing_data, testing_labels = dg.query_data( samples=100) # Create a random testing dataset. predictions = n.get_predictions( testing_data) # This call should return predictions. print "Accuracy of predictions on XOR data = " + str( accuracy(testing_labels, predictions)) + "%"
import sys sys.path.append('../') from tools.trainer import trainer, poly_trainer from network import expert, novice, judge from dataset import xor from globals import * if __name__ == '__main__': dataset = xor() ################ Expert ################ print(" \n\n Expert Assembly \n\n") expert_net = expert(images=dataset.images) expert_net.cook(labels=dataset.labels) expert_bp = trainer(expert_net, dataset.feed, init_vars=False, tensorboard='expert') ################ Indpendent Novice ################ """ print (" \n\n Independent Novice Assembly \n\n") indep_net = novice(images = dataset.images, name = 'novice_independent') indep_net.cook( labels = dataset.labels ) indep_bp = trainer( indep_net, session = expert_bp.session, dataset.feed) """
num_classes = 26 (X, y) = dataset.character() hidden_layer = 20 data = np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]).reshape(1, 64) elif (args["type"] == '2'): num_classes = 6 (X, y) = dataset.lima_bit() hidden_layer = 12 data = np.array([0, 0, 0, 1, 0]).reshape(1, 5) elif (args["type"] == '3'): num_classes = 2 (X, y) = dataset.xor() hidden_layer = 2 data = np.array([0, 0]).reshape(1, 2) elif (args["type"] == '4'): num_classes = 2 (X, y) = dataset.tiga_bit() hidden_layer = 3 data = np.array([0, 1, 0]).reshape(1, 3) num_inputs = X.shape[1] shape = (num_inputs, hidden_layer, num_classes) # Set up cost_func = functools.partial(eval_neural_network, shape=shape, X=X, y=y) swarm = pso.ParticleSwarm(cost_func, dim=dim_weights(shape), size=50)