Exemplo n.º 1
0
def main(_):
    tf_filenames = dataset_factory.get_tf_filenames(FLAGS.data_dir,
                                                    FLAGS.split_name,
                                                    shuffle=True)

    for i in range(FLAGS.num_epoch):
        print("-" * 30)
        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
        print("Training epoch {}/{}".format(i + 1, FLAGS.num_epoch))
        for tf_filename in tqdm(tf_filenames):
            # read tensor from dataset
            dataset = dataset_factory.get_dataset(tf_filename)
            # bbox: [ymin,xmin,ymax,xmax]
            image, bbox, _ = dataset_factory.data_provider(dataset)

            # TODO: receive tensor, return tensor.
            # image,bbox = preprocessing(image,bbox)

            # TODO: run tensor to get a training pair (exemplar,instance)
            # exemplar_img,instance_img,regression_target,conf_target = \
            #       dataset_factory.get_pair(image,bbox)

            pdb.set_trace()

    return
Exemplo n.º 2
0
def get_weights(model_name,
                dataset_name,
                dataset_dir,
                dataset_split_name,
                checkpoint_path,
                conv_scope=None,
                batch_size=1,
                is_training=False):

    with tf.Graph().as_default():
        dataset = dataset_factory.get_dataset(dataset_name, dataset_split_name,
                                              dataset_dir)
        preprocessing_fn = preprocessing_factory.get_preprocessing(
            model_name, is_training=is_training)
        network_fn = network_factory.get_network_fn(model_name,
                                                    FLAGS.num_classes)
        images, _, labels = train_test_utils.load_batch(
            dataset,
            preprocessing_fn,
            is_training=is_training,
            batch_size=batch_size,
            shuffle=False)
        logits, end_points = network_fn(images)

        model_vars = slim.get_model_variables()

        variables_to_restore = slim.get_variables_to_restore()
        restorer = tf.train.Saver(variables_to_restore)

        if os.path.isdir(checkpoint_path):
            checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)

        with tf.Session() as sess:
            restorer.restore(sess, checkpoint_path)

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            vals = sess.run(model_vars)
            val_map = {}
            for i, var in enumerate(model_vars):
                if 'conv' in var.op.name:
                    val_map[var.op.name] = vals[i]

            coord.request_stop()
            coord.join()

    return val_map
def main():
    import dataset_factory

    tf_filenames = dataset_factory.get_tf_filenames("./tf_records",
                                                    "train",
                                                    shuffle=True)
    dataset = dataset_factory.get_dataset(tf_filenames[0])
    # bbox: [ymin,xmin,ymax,xmax]
    image, bbox, _ = dataset_factory.data_provider(dataset)

    # bbox coordinates range (0,1) for next processing
    bbox = utils.bbox_coord_range(image, bbox)

    # synthetic processing
    image, bbox = preprocess_for_train(image, bbox, out_shape=312)

    # show the processing result
    img, box = visualize_result(image, bbox)
    show_img_and_bbox(img, box)
Exemplo n.º 4
0
def main(_):
    if not FLAGS.output_file:
        raise ValueError(
            'You must supply the path to save to with --output_file')
    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default() as graph:
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
                                              FLAGS.dataset_dir)
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            is_training=FLAGS.is_training)
        image_size = FLAGS.image_size or network_fn.default_image_size
        placeholder = tf.placeholder(
            name='input',
            dtype=tf.float32,
            shape=[FLAGS.batch_size, image_size, image_size, 3])
        network_fn(placeholder)
        graph_def = graph.as_graph_def()
        with gfile.GFile(FLAGS.output_file, 'wb') as f:
            f.write(graph_def.SerializeToString())
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        #######################
        # Config model_deploy #
        #######################
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=FLAGS.task,
            num_replicas=FLAGS.worker_replicas,
            num_ps_tasks=FLAGS.num_ps_tasks)

        # Create global_step
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ######################
        # Select the network #
        ######################
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            weight_decay=FLAGS.weight_decay,
            is_training=True)

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=True)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        with tf.device(deploy_config.inputs_device()):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=20 * FLAGS.batch_size,
                common_queue_min=10 * FLAGS.batch_size)
            [image, label] = provider.get(['image', 'label'])
            label -= FLAGS.labels_offset

            train_image_size = FLAGS.train_image_size or network_fn.default_image_size

            image = image_preprocessing_fn(image, train_image_size,
                                           train_image_size)

            images, labels = tf.train.batch(
                [image, label],
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size)
            labels = slim.one_hot_encoding(
                labels, dataset.num_classes - FLAGS.labels_offset)
            batch_queue = slim.prefetch_queue.prefetch_queue(
                [images, labels], capacity=2 * deploy_config.num_clones)

        ####################
        # Define the model #
        ####################
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple clones of network_fn."""
            images, labels = batch_queue.dequeue()
            logits, end_points = network_fn(images)

            #############################
            # Specify the loss function #
            #############################
            if 'AuxLogits' in end_points:
                tf.losses.softmax_cross_entropy(
                    logits=end_points['AuxLogits'],
                    onehot_labels=labels,
                    label_smoothing=FLAGS.label_smoothing,
                    weights=0.4,
                    scope='aux_loss')
            tf.losses.softmax_cross_entropy(
                logits=logits,
                onehot_labels=labels,
                label_smoothing=FLAGS.label_smoothing,
                weights=1.0)
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        #################################
        # Configure the moving averages #
        #################################
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        #########################################
        # Configure the optimization procedure. #
        #########################################
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = _configure_learning_rate(dataset.num_samples,
                                                     global_step)
            optimizer = _configure_optimizer(learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.sync_replicas:
            # If sync_replicas is enabled, the averaging will be done in the chief
            # queue runner.
            optimizer = tf.train.SyncReplicasOptimizer(
                opt=optimizer,
                replicas_to_aggregate=FLAGS.replicas_to_aggregate,
                variable_averages=variable_averages,
                variables_to_average=moving_average_variables,
                replica_id=tf.constant(FLAGS.task, tf.int32, shape=()),
                total_num_replicas=FLAGS.worker_replicas)
        elif FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = _get_variables_to_train()

        #  and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)

        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op],
                                                          total_loss,
                                                          name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        ###########################
        # Kicks off the training. #
        ###########################
        slim.learning.train(
            train_tensor,
            logdir=FLAGS.train_dir,
            master=FLAGS.master,
            is_chief=(FLAGS.task == 0),
            init_fn=_get_init_fn(),
            summary_op=summary_op,
            number_of_steps=FLAGS.max_number_of_steps,
            log_every_n_steps=FLAGS.log_every_n_steps,
            save_summaries_secs=FLAGS.save_summaries_secs,
            save_interval_secs=FLAGS.save_interval_secs,
            sync_optimizer=optimizer if FLAGS.sync_replicas else None)
Exemplo n.º 6
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    #os.environ["OMP_NUM_THREADS"] = "54"
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ####################
        # Select the model #
        ####################
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            is_training=False)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset,
            shuffle=False,
            common_queue_capacity=2 * FLAGS.batch_size,
            common_queue_min=FLAGS.batch_size)
        [image, label] = provider.get(['image', 'label'])
        label -= FLAGS.labels_offset

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        eval_image_size = \
            FLAGS.eval_image_size or network_fn.default_image_size

        image = image_preprocessing_fn(image, eval_image_size, eval_image_size)

        images, labels = tf.train.batch(
            [image, label],
            batch_size=FLAGS.batch_size,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=5 * FLAGS.batch_size)

        ####################
        # Define the model #
        ####################
        logits, _ = network_fn(images)

        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        predictions = tf.argmax(logits, 1)
        #labels = tf.squeeze(labels)

        # Define the metrics:
        names_to_values, names_to_updates = \
            slim.metrics.aggregate_metric_map({
                'Accuracy': slim.metrics.streaming_accuracy(
                    predictions, labels),
                'Recall_5': slim.metrics.streaming_recall_at_k(
                    logits, labels, 5),
        })

        # Print the summaries to screen.
        for name, value in names_to_values.items():
            summary_name = 'eval/%s' % name
            op = tf.summary.scalar(summary_name, value, collections=[])
            op = tf.Print(op, [value], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # TODO(sguada) use num_epochs=1
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            # This ensures that we make a single pass over all of the data.
            num_batches = math.ceil(dataset.num_samples /
                                    float(FLAGS.batch_size))

        num_batches = 100

        config = tf.ConfigProto(
            inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
            intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads)

        if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
            checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
        else:
            checkpoint_path = FLAGS.checkpoint_path

        tf.logging.info('Evaluating %s' % checkpoint_path)

        slim.evaluation.evaluate_once(
            master=FLAGS.master,
            checkpoint_path=checkpoint_path,
            logdir=FLAGS.eval_dir,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            variables_to_restore=variables_to_restore,
            hooks=[_LoggerHook()],
            session_config=config)
import debiasing_networks
import visualize_data
import dataset_factory
import matplotlib.pyplot as plt

desired_number_of_samples = 5000
debias_type = 'regression_cond_y' #'lda' #'regression_cond_x' #''lda' # 'regression_cond_y'
use_continuous_y = False
# number of y intervals if a continous variable is used as output
number_of_continuous_y_intervals = None

dataset_nr = 5
sim_dataset_names = ['SJL', 'ZafarWWW2017CaseII', 'ZafarAISTATS2017', 'JLcontinuousY','GMcontinuousY','gaussian_test']
sim_dataset_name = sim_dataset_names[dataset_nr]

current_dataset, x, y, z, xl, yl, zl = dataset_factory.get_dataset(simulator_dataset_name=sim_dataset_name,nr_of_samples=desired_number_of_samples,
                                                                       debias_type=debias_type,use_continuous_y=use_continuous_y,number_of_continuous_y_intervals=number_of_continuous_y_intervals)

y_val_ranges = [0.0,1.0]
group_indices_dict = dataset_factory.compute_group_indices(y=y,y_val_ranges=y_val_ranges)
group_indices = []
for k in group_indices_dict:
    group_indices.append(group_indices_dict[k])

# create a list of group indices (this is what the data loader would typically do)

#debias_layer = debiasing_networks.DebiasLayer(nr_inputs=2,nr_outputs=2,debias_type=debias_type,use_batch_normalization=False,
#                                              use_protected_projection=False,use_only_projection_penalty=True, sigma_reg=0.0)

proj_layer = debiasing_networks.ProtectedRegressionLayerCondY()

h_projected,projection_loss,w = proj_layer(h=x,z=z,y=y,turn_protected_projection_on=True, use_only_projection_penalty=False,current_epoch=None, group_indices=group_indices)
Exemplo n.º 8
0
def get_train_dataset_num_samples(dataset_name, dataset_dir):
  with tf.Graph().as_default():
    dataset = dataset_factory.get_dataset(
        dataset_name, 'train', dataset_dir)

    return dataset.num_samples
Exemplo n.º 9
0
def eval_model(model_name,
               dataset_name,
               dataset_dir,
               train_dir,
               batch_size=32,
               use_mask=False,
               num_groups=2,
               init_from_pre_trained=False,
               init_pointwise_from_pre_trained=False,
               weights_map=None,
               **kwargs):
  """ Evaluate the performance of a model. """

  with tf.Graph().as_default():
    tf.logging.set_verbosity(tf.logging.INFO)

    tf_global_step = tf.train.get_or_create_global_step()

    dataset = dataset_factory.get_dataset(
        dataset_name, 'test', dataset_dir)

    preprocessing_fn = preprocessing_factory.get_preprocessing(
        model_name, is_training=False)

    network_fn = network_factory.get_network_fn(
        model_name, dataset.num_classes, use_mask=use_mask)

    images, images_raw, labels = load_batch(dataset,
                                            preprocessing_fn,
                                            shuffle=False,
                                            batch_size=batch_size,
                                            is_training=False)

    logits, _ = network_fn(images, **kwargs)

    predictions = tf.argmax(logits, 1)

    # Evaluation
    names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
        'eval/accuracy': slim.metrics.streaming_accuracy(predictions, labels),
        'eval/recall_5': slim.metrics.streaming_sparse_recall_at_k(logits, labels, 5),
    })

    summary_op = create_eval_summary_op(names_to_values)

    num_evals = int(math.ceil(dataset.num_samples / float(batch_size)))
    variables_to_restore = slim.get_variables_to_restore()

    # We don't want to mess up with the train dir
    eval_dir = train_dir + '_eval'

    metric_values = slim.evaluation.evaluate_once(
        '',
        tf.train.latest_checkpoint(train_dir),
        eval_dir,
        num_evals=num_evals,
        eval_op=list(names_to_updates.values()),
        final_op=list(names_to_updates.values()),
        variables_to_restore=variables_to_restore)

    names_to_values = dict(zip(names_to_values.keys(), metric_values))
    for name in names_to_values:
      print('%s: %f' % (name, names_to_values[name]))

  return names_to_values['eval/accuracy'], names_to_values['eval/recall_5']
Exemplo n.º 10
0
def train_model(model_name,
                dataset_name,
                dataset_dir,
                train_dir,
                batch_size=32,
                checkpoint_path=None,
                max_number_of_epochs=10,
                trainable_scopes=None,
                checkpoint_exclude_scopes=None,
                use_mask=False,
                weight_decay=4e-5,
                learning_rate=1e-3,
                num_groups=2,
                init_from_pre_trained=False,
                init_pointwise_from_pre_trained=False,
                weights_map=None,
                bipartite_connections_map=None,
                **kwargs):
  """ Train the given model.

  Returns:
      A final loss of the training process.
  """

  tf.logging.set_verbosity(tf.logging.INFO)

  layer_replacement = kwargs.get('layer_replacement')

  with tf.Graph().as_default():
    dataset = dataset_factory.get_dataset(dataset_name, 'train', dataset_dir)

    preprocessing_fn = preprocessing_factory.get_preprocessing(
        model_name, is_training=True)

    network_fn = network_factory.get_network_fn(
        model_name, dataset.num_classes,
        use_mask=use_mask, weight_decay=weight_decay, is_training=True)

    max_number_of_steps = int(math.ceil(max_number_of_epochs * dataset.num_samples
                                        / batch_size))

    tf.logging.info('Training on %s' % train_dir)
    tf.logging.info('Number of samples: %d' % dataset.num_samples)
    tf.logging.info('Max number of steps: %d' % max_number_of_steps)

    """
    Load data from the dataset and pre-process.
    """
    images, images_raw, labels = load_batch(
        dataset, preprocessing_fn, is_training=True)

    # create arg_scope
    logits, end_points = network_fn(images,
        bipartite_connections_map=bipartite_connections_map,
        **kwargs)

    # compute losses
    one_hot_labels = slim.one_hot_encoding(labels, dataset.num_classes)
    slim.losses.softmax_cross_entropy(logits, one_hot_labels)
    total_loss = slim.losses.get_total_loss()

    # configure learning rate
    global_step = slim.create_global_step()
    learning_rate = configure_learning_rate(learning_rate,
                                            dataset.num_samples,
                                            global_step)

    # create summary op
    summary_op = create_train_summary_op(end_points, learning_rate,
                                         total_loss, images_raw, images,
                                         model_name=model_name)

    """
    Configure optimizer and training.

    if we do fine-tuning, just set trainable_scopes.
    """
    variables_to_train = get_variables_to_train(trainable_scopes)
    optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate,
                                          decay=0.9,
                                          momentum=0.9,
                                          epsilon=1.0)

    # training operator
    train_op = slim.learning.create_train_op(total_loss, optimizer,
                                             variables_to_train=variables_to_train)

    init_fn = get_init_fn(checkpoint_path,
                          checkpoint_exclude_scopes,
                          layer_replacement,
                          model_name,
                          weights_map=weights_map,
                          bipartite_connections_map=bipartite_connections_map,
                          init_from_pre_trained=init_from_pre_trained,
                          init_pointwise_from_pre_trained=init_pointwise_from_pre_trained,
                          num_groups=num_groups)
    # final loss value
    final_loss = slim.learning.train(train_op,
                                     logdir=train_dir,
                                     init_fn=init_fn,
                                     number_of_steps=max_number_of_steps,
                                     log_every_n_steps=10,
                                     save_summaries_secs=60)

    print('Finished training. Final batch loss %f' % final_loss)

    return final_loss
Exemplo n.º 11
0
def evaluate(model_name,
             dataset_name,
             dataset_dir,
             dataset_split_name,
             eval_dir,
             checkpoint_path,
             conv_scope,
             batch_size=32,
             in_channel=0,
             out_channel=0,
             is_training=False):
    """
  Evaluate a single conv_scope
  """

    with tf.Graph().as_default():
        g = tf.get_default_graph()

        dataset = dataset_factory.get_dataset(dataset_name, dataset_split_name,
                                              dataset_dir)
        num_batches = math.ceil(dataset.num_samples / batch_size)

        preprocessing_fn = preprocessing_factory.get_preprocessing(
            model_name, is_training=is_training)

        network_fn = network_factory.get_network_fn(model_name,
                                                    dataset.num_classes,
                                                    use_mask=True,
                                                    is_training=is_training)

        images, _, labels = train_test_utils.load_batch(
            dataset,
            preprocessing_fn,
            is_training=is_training,
            batch_size=batch_size,
            shuffle=False)

        logits, end_points = network_fn(images)
        predictions = tf.argmax(logits, 1)

        mask_assign_op = get_mask_assign_op(conv_scope, in_channel,
                                            out_channel, g)

        one_hot_labels = slim.one_hot_encoding(labels, dataset.num_classes)
        loss = tf.nn.softmax_cross_entropy_with_logits_v2(
            logits=logits, labels=one_hot_labels)

        # Evaluation
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'eval/accuracy':
            tf.metrics.accuracy(predictions, labels),
            'eval/recall_5':
            slim.metrics.streaming_sparse_recall_at_k(logits, labels, 5),
            'eval/mean_loss':
            tf.metrics.mean(loss),
        })

        mask_variables = [
            var for var in slim.get_model_variables() if 'mask' in var.op.name
        ]

        variables_to_restore = slim.get_variables_to_restore()
        variables_to_restore = [
            x for x in variables_to_restore if 'mask' not in x.op.name
        ]
        restorer = tf.train.Saver(variables_to_restore)

        with tf.Session() as sess:
            tf.summary.FileWriter(eval_dir, sess.graph)

            restorer.restore(sess, tf.train.latest_checkpoint(checkpoint_path))

            sess.run(tf.local_variables_initializer())
            sess.run(tf.variables_initializer(mask_variables))
            sess.run(mask_assign_op)

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            for batch_id in range(num_batches):
                if batch_id != 0 and batch_id % 10 == 0:
                    tf.logging.info('Evaluated [%5d/%5d]' %
                                    (batch_id, num_batches))

                # run accuracy evaluation
                sess.run(list(names_to_updates.values()))

            metric_values = sess.run(list(names_to_values.values()))
            for metric, value in zip(names_to_values.keys(), metric_values):
                print('Metric %s has value: %f' % (metric, value))

            coord.request_stop()
            coord.join()
Exemplo n.º 12
0
def main(argv):

    seed = None

    if os.path.exists(FLAGS.config):
        with open(FLAGS.config) as ifp:
            cfg = yaml.safe_load(ifp)

            augmentations = cfg['dataset']['train'][
                'augmentations'] if 'augmentations' in cfg['dataset'][
                    'train'] else []
            train_dataset = dataset_factory.get_dataset(
                cfg['dataset']['dataset_dir'],
                cfg['dataset']['train']['pattern'],
                cfg['training']['batch_size'], cfg['dataset']['height'],
                cfg['dataset']['width'], cfg['dataset']['channel'],
                augmentations, seed, cfg['dataset']['mul'],
                cfg['dataset']['add'])

            augmentations = cfg['dataset']['validation'][
                'augmentations'] if 'augmentations' in cfg['dataset'][
                    'validation'] else []
            val_dataset = dataset_factory.get_dataset(
                cfg['dataset']['dataset_dir'],
                cfg['dataset']['validation']['pattern'],
                cfg['validation']['batch_size'], cfg['dataset']['height'],
                cfg['dataset']['width'], cfg['dataset']['channel'],
                augmentations, seed, cfg['dataset']['mul'],
                cfg['dataset']['add'])
            #           for data in train_dataset.take(1):
            #               print(data[0].shape)
            #               print(data[0][0].shape)
            #               img = data[0][0].numpy()
            #               print(np.min(img), np.max(img))
            #               plt.imsave('tmp.png', img)

            tf.keras.backend.set_image_data_format('channels_last')

            num_class = cfg['dataset']['num_class']
            height = cfg['dataset']['height']
            width = cfg['dataset']['width']
            channel = cfg['dataset']['channel']

            if cfg['model']['name'] == 'mobilenet':

                alpha = cfg['model']['alpha']
                depth_multiplier = cfg['model']['depth_multiplier']
                dropout = cfg['model']['dropout']

                model = tf.keras.applications.MobileNet(
                    input_shape=(height, width, channel),
                    alpha=alpha,
                    depth_multiplier=depth_multiplier,
                    include_top=False,
                    pooling='avg',
                    weights='imagenet',
                    classes=num_class)

                inputs = model.get_layer('input_1').input
                outputs = model.get_layer('global_average_pooling2d').output
                outputs = tf.keras.layers.Reshape((1, 1, int(1024 * alpha)),
                                                  name='reshape_1')(outputs)
                outputs = tf.keras.layers.Dropout(dropout,
                                                  name='dropout')(outputs)
                outputs = tf.keras.layers.Conv2D(num_class, (1, 1),
                                                 padding='same',
                                                 name='conv_preds')(outputs)
                outputs = tf.keras.layers.Reshape((num_class, ),
                                                  name='reshape_2')(outputs)
                outputs = tf.keras.layers.Activation(
                    'softmax', name='act_softmax')(outputs)

                model = tf.keras.Model(inputs,
                                       outputs,
                                       name='mobilenet_%0.2f_%s_%d' %
                                       (alpha, height, num_class))

            else:
                print('Error: not supported model', file=sys.stderr)
                return 1

            model.summary()

            if cfg['optimizer']['name'] == 'adam':

                learning_rate = cfg['optimizer']['learning_rate']
                beta_1 = cfg['optimizer']['beta_1']
                beta_2 = cfg['optimizer']['beta_2']
                epsilon = cfg['optimizer']['epsilon']
                amsgrad = cfg['optimizer']['amsgrad']

                optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1,
                                                     beta_2, epsilon, amsgrad)
            else:
                print('Error: not supported optimizer', file=sys.stderr)
                return 1

            if cfg['loss']['name'] == 'sparse_categorical_cross_entropy':

                loss = tf.keras.losses.SparseCategoricalCrossentropy()

            else:
                print('Error: not supported optimizer', file=sys.stderr)
                return 1

            metrics = []
            for metric_config in cfg['metrics']:
                if metric_config['name'] == 'sparse_categorical_accuracy':
                    metrics.append(
                        tf.keras.metrics.SparseCategoricalAccuracy())

            model.compile(optimizer=optimizer, loss=loss, metrics=metrics)

            epoch = 0
            history = model.fit(
                train_dataset,
                initial_epoch=epoch,
                epochs=cfg['training']['epochs'],
                verbose=cfg['training']['verbose'],
                validation_data=val_dataset,
                steps_per_epoch=math.ceil(cfg['dataset']['train']['count'] /
                                          cfg['training']['batch_size']),
                validation_steps=cfg['validation']['steps'],
                validation_freq=cfg['validation']['freq'])
            epoch += cfg['training']['epochs']

            print(history.history)

            results = model.evaluate(
                val_dataset,
                verbose=cfg['validation']['verbose'],
                steps=math.ceil(cfg['dataset']['validation']['count'] /
                                cfg['validation']['batch_size']))
            print("test loss, test acc:", results)

            if not os.path.exists(cfg['save']['dir_path']):
                os.makedirs(cfg['save']['dir_path'])
            fname = os.path.join(
                cfg['save']['dir_path'],
                f'{cfg["save"]["basename"]}-{epoch:06d}.{"h5" if cfg["save"]["format"]=="h5" else ""}'
            )

            model.save(fname, save_format=cfg['save']['format'])

            return 0

    print('Error: config file not found', file=sys.stderr)
    return 1