Exemplo n.º 1
0
class TrainCheck(Callback):
    def __init__(self, output_path, model_name, img_shape, nb_class):
        self.epoch = 0
        self.output_path = output_path
        self.model_name = model_name
        self.img_shape = img_shape
        self.nb_class = nb_class
        self.palette = VOCPalette(nb_class=nb_class)

    def result_map_to_img(self, res_map):
        res_map = np.squeeze(res_map)
        argmax_idx = np.argmax(res_map, axis=2).astype('uint8')

        return argmax_idx

    def on_epoch_end(self, epoch, logs={}):
        self.epoch = epoch + 1
        # self.visualize(os.path.join(self.output_path,'test.png'))

    def visualize(self, path):
        imgorg = Image.open(path).convert('RGB')
        img = imgorg.resize((self.img_shape[1], self.img_shape[0]),
                            Image.ANTIALIAS)
        img_arr = np.array(img)
        img_arr = img_arr / 127.5 - 1
        img_arr = np.expand_dims(img_arr, 0)
        pred = self.model.predict(img_arr)
        res_img = self.result_map_to_img(pred[0])

        PIL_img_pal = self.palette.genlabelpal(res_img)
        PIL_img_pal = PIL_img_pal.resize((imgorg.size[0], imgorg.size[1]),
                                         Image.ANTIALIAS)
        PIL_img_pal.save(
            os.path.join(
                self.output_path,
                self.model_name + '_epoch_' + str(self.epoch) + '.png'))
Exemplo n.º 2
0
# resize the input image to the input layer's size
img = imgorg.resize((img_width, img_height), Image.ANTIALIAS)
# convert to numpy array
img_arr = np.array(img)
# Centering helps normalization image (-1 ~ 1 value)
img_arr = img_arr / 127.5 - 1
# batch size is set to one
img_arr = np.expand_dims(img_arr, 0)
# img_arr = np.expand_dims(img_arr, 3)
# go forward of the network
pred = model.predict(img_arr)
# compute the maximum axis number in probability tensor, which represents the label assigned
# res is the final label map
res = result_map_to_img(pred[0])
# print color on label map use palette
PIL_img_pal = palette.genlabelpal(res)
# resize the result to the original size
PIL_img_pal = PIL_img_pal.resize((imgorg.size[0], imgorg.size[1]), Image.ANTIALIAS)

obj = findObject(np.array(PIL_img_pal))

# plot figures
plt.ion()
plt.figure('Unet test')
plt.suptitle(img_path)
plt.subplot(1, 3, 1), plt.title('org')
plt.imshow(imgorg), plt.axis('off')
plt.subplot(1, 3, 2), plt.title(obj)
plt.imshow(PIL_img_pal), plt.axis('off')
plt.subplot(1, 3, 3), plt.title('label')
plt.imshow(imglab), plt.axis('off')
Exemplo n.º 3
0
    _ = np.zeros(B_SIZE)
    seed = random.randrange(1, 1000)

    x_tmp_gen = x_data_gen.flow(np.array(x), _, batch_size=B_SIZE, seed=seed)
    y_tmp_gen = y_data_gen.flow(np.array(y), _, batch_size=B_SIZE, seed=seed)

    # Finally, yield x, y data.
    for j in range(GEN_NUM):
        x_result, _ = next(x_tmp_gen)
        y_result, _ = next(y_tmp_gen)
        x_res = x_result[0]
        y_res = y_result[0]
        y_res = np.squeeze(y_res, axis=2)
        img = image.array_to_img(x_res)
        lab_arr = y_res.astype('uint8')
        lab = palette.genlabelpal(lab_arr)
        X_res_path = gen_img_path + "{}".format(
            namesimg[i]) + '_' + str(j) + ".png"
        Y_res_path = gen_lab_path + "{}".format(
            namesimg[i]) + '_' + str(j) + ".png"
        img.save(X_res_path)
        lab.save(Y_res_path)
        if i < val_num:
            f_val.writelines(namesimg[i] + '_' + str(j) + "\n")
        else:
            f_train.writelines(namesimg[i] + '_' + str(j) + "\n")

    #    img.show()
    #    lab.show()
f_train.close()
f_val.close()