Exemplo n.º 1
0
	def _read_data(self, dataset_root_dir):

		dataset_dir = self.dataset_dir(dataset_root_dir)

        	positive_file_name = self._positive_file_name(dataset_dir)
	     	part_file_name = self._part_file_name(dataset_dir)
        	negative_file_name = self._negative_file_name(dataset_dir)
	       	image_list_file_name = self._image_list_file_name(dataset_dir)

        	tensorflow_file_names = [positive_file_name, part_file_name, negative_file_name, image_list_file_name]

        	positive_ratio = 1.0/6
		part_ratio = 1.0/6
		landmark_ratio = 1.0/6
		negative_ratio = 3.0/6

        	positive_batch_size = int(np.ceil(self._batch_size*positive_ratio))
        	part_batch_size = int(np.ceil(self._batch_size*part_ratio))
        	negative_batch_size = int(np.ceil(self._batch_size*negative_ratio))
        	landmark_batch_size = int(np.ceil(self._batch_size*landmark_ratio))

        	batch_sizes = [positive_batch_size, part_batch_size, negative_batch_size, landmark_batch_size]
		
		self._number_of_samples = 0
        	for d in tensorflow_file_names:
            		self._number_of_samples += sum(1 for _ in tf.python_io.tf_record_iterator(d))

		image_size = self.network_size()
		tensorflow_dataset = TensorFlowDataset()
		return(tensorflow_dataset.read_tensorflow_files(tensorflow_file_names, batch_sizes, image_size))
Exemplo n.º 2
0
	def _read_data(self, dataset_root_dir):
		dataset_dir = self.dataset_dir(dataset_root_dir)		
		tensorflow_file_name = self._image_list_file_name(dataset_dir)
		
		self._number_of_samples = 0
		self._number_of_samples = sum(1 for _ in tf.python_io.tf_record_iterator(tensorflow_file_name))
		
		image_size = self.network_size()
		tensorflow_dataset = TensorFlowDataset()
		return(tensorflow_dataset.read_tensorflow_file(tensorflow_file_name, self._batch_size, image_size))
Exemplo n.º 3
0
    def _generate_dataset(self, target_root_dir):
        tensorflow_dataset = TensorFlowDataset()

        print('Generating TensorFlow dataset for positive images.')
        if (not tensorflow_dataset.generate(
                SimpleFaceDataset.positive_file_name(target_root_dir),
                target_root_dir, 'positive')):
            print('Error generating TensorFlow dataset for positive images.')
            return (False)
        print('Generated TensorFlow dataset for positive images.')

        print('Generating TensorFlow dataset for partial images.')
        if (not tensorflow_dataset.generate(
                SimpleFaceDataset.part_file_name(target_root_dir),
                target_root_dir, 'part')):
            print('Error generating TensorFlow dataset for partial images.')
            return (False)
        print('Generated TensorFlow dataset for partial images.')

        print('Generating TensorFlow dataset for negative images.')
        if (not tensorflow_dataset.generate(
                SimpleFaceDataset.negative_file_name(target_root_dir),
                target_root_dir, 'negative')):
            print('Error generating TensorFlow dataset for negative images.')
            return (False)
        print('Generated TensorFlow dataset for negative images.')

        print('Generating TensorFlow dataset for landmark images.')
        if (not tensorflow_dataset.generate(
                self._image_list_file_name(target_root_dir), target_root_dir,
                'image_list')):
            print('Error generating TensorFlow dataset for landmark images.')
            return (False)
        print('Generated TensorFlow dataset for landmark images.')

        return (True)
Exemplo n.º 4
0
	def _generate_dataset(self, target_root_dir):
		tensorflow_dataset = TensorFlowDataset()
		if(not tensorflow_dataset.generate(self._image_list_file_name(target_root_dir), target_root_dir, 'image_list')):
			return(False) 

		return(True)