Exemplo n.º 1
0
def compute_fid(netG,
                data_dir,
                reference_data,
                cpu_inference=False,
                data_size=50000,
                delete_cache=False):

    original_data_path = reference_data + "/distil_pics/"

    if delete_cache:
        for file_img in glob.glob(data_dir + '/*.png'):
            os.remove(file_img)

    if not os.path.exists(data_dir):
        os.makedirs(data_dir)

    if len(glob.glob(data_dir + '/*')) < 50000:
        print(
            "Here is no generated data, so I generate it using provided model")

        b_size = 50

        eval_dataloader = DataLoader(PairedImageDataset(reference_data),
                                     batch_size=b_size,
                                     shuffle=False,
                                     num_workers=4,
                                     drop_last=False)

        input_eval_source = torch.cuda.FloatTensor(b_size, 512)
        netG.eval()
        for i_eval_img, eval_batch in tqdm(enumerate(eval_dataloader)):
            input_img = Variable(input_eval_source.copy_(eval_batch['input']))
            with torch.no_grad():

                if cpu_inference:
                    input_img = input_img.cpu()
                output_img = netG(input_img)

            for i_img_from_batch in range(b_size):
                img_np = output_img[i_img_from_batch:(
                    i_img_from_batch + 1)].detach().cpu().numpy()

                img_np = np.moveaxis(img_np, 1, -1)
                img_np = np.clip((img_np + 1) / 2, 0, 1)  # (-1,1) -> (0,1)

                imsave(
                    os.path.join(
                        data_dir,
                        '%s.png' % (i_eval_img * b_size + i_img_from_batch)),
                    img_as_ubyte(img_np[0]))

                if i_eval_img + 1 == data_size:
                    break
    else:
        pass
        #print(f"I found {len(glob.glob(data_dir + '/*.png'))} pictures in the folder")
    paths = [data_dir, original_data_path]

    fid = calculate_fid_given_paths(paths, 32, True, 2048, delete_cache)
    return fid
Exemplo n.º 2
0
                          args.base_model_str, 'pth', 'latest.pth')
    netD.load_state_dict(torch.load('initial_weights/netD_B_seed_1.pth.tar'))
    print('load D from %s' % 'initial_weights')
    start_epoch = 0
    best_FID = 1e9
    loss_G_lst, loss_G_perceptual_lst, loss_G_GAN_lst, loss_D_lst = [], [], [], []

# Dataset loader: img shape=(256,256)
dataset_dir = os.path.join(foreign_dir, 'datasets', args.dataset)
soft_data_dir = os.path.join(foreign_dir, 'train_set_result', args.dataset)
transforms_ = [
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]  # (0,1) -> (-1,1)
dataloader = DataLoader(PairedImageDataset(dataset_dir,
                                           soft_data_dir,
                                           transforms_=transforms_,
                                           mode=args.task),
                        batch_size=args.batch_size,
                        shuffle=True,
                        num_workers=args.cpus,
                        drop_last=True)
dataloader_test = DataLoader(ImageDataset(os.path.join(dataset_dir, 'test',
                                                       source_str),
                                          transforms_=transforms_),
                             batch_size=1,
                             shuffle=False,
                             num_workers=args.cpus)

# FID img dirs:
test_img_generation_dir_temp = os.path.join(results_dir,
                                            'test_set_generation_temp')