from models.crnl_net import NetAdapter from skorch_ext.callbacks import LayerDataViz, EpochSummary, GetModuleOnTrainBegin from functools import partial from experiments.viz import Viz viz = Viz() expe_config = { 'name': 'crnl_net_adam_weighted_filtered', 'dir': '/dycog/Jeremie/Loic/results', 'datasets': [{ 'eeg_dataset': RSVP(), 'include_subjects': ['VPfat', 'VPgcc'], 'exclude_subjects': [], 'apply_filter': { 'l_freq': 0.1, 'h_freq': 20. }, #epochs params 'exclude_channels': ['P8', 'O2'], 'tmin': 0.0, 'tmax': 0.5, #others params 'cache': True }], 'scenario':
import shelve import glob import os import numpy as np import mne from experiments.base import ExperimentLogger from skorch_ext.netsaver import NetSaver from torch_ext.pytorch_smoothgrad.gradients import VanillaGrad, SmoothGrad from datasets.rsvp import RSVP raw_mne = RSVP().get_subject_data('VPgcc').pick_types(eeg=True, exclude=['P8', 'O2']) def ma(values, window): weights = np.repeat(1.0, window)/window sma = np.convolve(values, weights, 'valid') return sma if __name__ == '__main__': import dill as pickle import copy d = '/dycog/Jeremie/Loic/results/eeg_net_sgd_weighted_filtered_fat/' g = os.path.join(d, '*.dat') for f in glob.glob(g): experiment_logger = ExperimentLogger(f[:-4], overwrite=False)