Exemplo n.º 1
0
    torch.backends.cudnn.deterministic = True
    if not args.cuda:
        args.gpu = -1
    if torch.cuda.is_available() and args.cuda:
        print('Note: You are using GPU for training')
        torch.cuda.set_device(args.gpu)
        torch.cuda.manual_seed(args.seed)
    if torch.cuda.is_available() and not args.cuda:
        print('Warning: You have Cuda but not use it. You are using CPU for training.')
    np.random.seed(args.seed)
    random.seed(args.seed)
    logger = get_logger()

    # Set up the data for training SST-1
    if args.dataset == 'SST-1':
        train_iter, dev_iter, test_iter = SST1.iters(args.data_dir, args.word_vectors_file, args.word_vectors_dir, batch_size=args.batch_size, device=args.gpu, unk_init=UnknownWordVecCache.unk)
    # Set up the data for training SST-2
    elif args.dataset == 'SST-2':
        train_iter, dev_iter, test_iter = SST2.iters(args.data_dir, args.word_vectors_file, args.word_vectors_dir, batch_size=args.batch_size, device=args.gpu, unk_init=UnknownWordVecCache.unk)
    elif args.dataset == 'Reuters':
        train_iter, dev_iter, test_iter = Reuters.iters(args.data_dir, args.word_vectors_file, args.word_vectors_dir, batch_size=args.batch_size, device=args.gpu, unk_init=UnknownWordVecCache.unk)
    else:
        raise ValueError('Unrecognized dataset')

    config = deepcopy(args)
    config.dataset = train_iter.dataset
    config.target_class = train_iter.dataset.NUM_CLASSES
    config.words_num = len(train_iter.dataset.TEXT_FIELD.vocab)

    print('Dataset {}    Mode {}'.format(args.dataset, args.mode))
    print('VOCAB num',len(train_iter.dataset.TEXT_FIELD.vocab))
Exemplo n.º 2
0
        print("Note: You are using GPU for training")
        torch.cuda.set_device(args.gpu)
        torch.cuda.manual_seed(args.seed)
    if torch.cuda.is_available() and not args.cuda:
        print(
            "Warning: You have Cuda but not use it. You are using CPU for training."
        )
    np.random.seed(args.seed)
    random.seed(args.seed)
    logger = get_logger()

    # Set up the data for training SST-1
    if args.dataset == 'SST-1':
        train_iter, dev_iter, test_iter = SST1.iters(
            args.data_dir,
            args.word_vectors_file,
            args.word_vectors_dir,
            batch_size=args.batch_size,
            device=args.gpu)
    # Set up the data for training SST-2
    elif args.dataset == 'SST-2':
        train_iter, dev_iter, test_iter = SST2.iters(
            args.data_dir,
            args.word_vectors_file,
            args.word_vectors_dir,
            batch_size=args.batch_size,
            device=args.gpu)
    else:
        raise ValueError('Unrecognized dataset')

    config = deepcopy(args)
    config.dataset = train_iter.dataset