Exemplo n.º 1
0
 def test_float(self):
     v1 = [
         0,          1.0497366,  0.8494359,  0.66231006, 0.66231006, 0.8494359,
         0,          0.66231006, 0.33652836, 0,           0,         0.5359344,
         0.8494359,  0.66231006, 1.0497366,  0.33652836, 0.66231006, 0.8494359,
         0.6800841,  0.33652836]
     gen = libMHCUDA.minhash_cuda_init(len(v1), 128, devices=1, seed=7, verbosity=2)
     vars = libMHCUDA.minhash_cuda_retrieve_vars(gen)
     bgen = WeightedMinHashGenerator.__new__(WeightedMinHashGenerator)
     bgen.dim = len(v1)
     bgen.rs, bgen.ln_cs, bgen.betas = vars
     bgen.sample_size = 128
     bgen.seed = None
     m = csr_matrix(numpy.array(v1, dtype=numpy.float32))
     hashes = libMHCUDA.minhash_cuda_calc(gen, m).astype(numpy.int32)
     libMHCUDA.minhash_cuda_fini(gen)
     self.assertEqual(hashes.shape, (1, 128, 2))
     true_hashes = numpy.array([bgen.minhash(v1).hashvalues], dtype=numpy.int32)
     self.assertEqual(true_hashes.shape, (1, 128, 2))
     try:
         self.assertTrue((hashes == true_hashes).all())
     except AssertionError as e:
         print("---- TRUE ----")
         print(true_hashes)
         print("---- FALSE ----")
         print(hashes)
         raise e from None
Exemplo n.º 2
0
 def test_deferred(self):
     v1 = [1, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 6, 7, 8, 0, 0, 0, 0, 0, 0, 9, 10, 4]
     v2 = [2, 0, 0, 0, 4, 3, 8, 0, 0, 0, 0, 4, 7, 10, 0, 0, 0, 0, 0, 0, 9, 0, 0]
     gen = libMHCUDA.minhash_cuda_init(len(v1), 128, devices=1, verbosity=2)
     vars = libMHCUDA.minhash_cuda_retrieve_vars(gen)
     libMHCUDA.minhash_cuda_fini(gen)
     gen = libMHCUDA.minhash_cuda_init(
         len(v1), 128, devices=1, deferred=True, verbosity=2)
     libMHCUDA.minhash_cuda_assign_vars(gen, *vars)
     bgen = WeightedMinHashGenerator.__new__(WeightedMinHashGenerator)
     bgen.dim = len(v1)
     bgen.rs, bgen.ln_cs, bgen.betas = vars
     bgen.sample_size = 128
     bgen.seed = None
     m = csr_matrix(numpy.array([v1, v2], dtype=numpy.float32))
     hashes = libMHCUDA.minhash_cuda_calc(gen, m)
     libMHCUDA.minhash_cuda_fini(gen)
     self.assertEqual(hashes.shape, (2, 128, 2))
     true_hashes = numpy.array([bgen.minhash(v1).hashvalues,
                                bgen.minhash(v2).hashvalues], dtype=numpy.uint32)
     self.assertEqual(true_hashes.shape, (2, 128, 2))
     try:
         self.assertTrue((hashes == true_hashes).all())
     except AssertionError as e:
         print("---- TRUE ----")
         print(true_hashes)
         print("---- FALSE ----")
         print(hashes)
         raise e from None