Exemplo n.º 1
0
def get_value_prop_with_conditions(column: str, con_column: str, con_value):
    '''
    Return the number of values of a certain column with conditions
    ------
    Args:
        column(str): column's header
        con_column(str): conditional column's header
        con_value(any type): conditional column's value

    Output:
        res(dict): e.g. {'operator001': 47, 'operator002': 26, 'operator003': 26}
    '''
    conn = sql_connection(sqlite_file)
    c = conn.cursor()
    c.execute(
        "SELECT DISTINCT {} FROM transactions WHERE {} = ? ORDER BY {}".format(
            column, con_column, column), (con_value, ))
    unique_values = c.fetchall()
    res = {}
    for (value, ) in unique_values:
        c.execute(
            "SELECT COUNT(*) FROM transactions WHERE {} = ? AND {} = ?".format(
                column, con_column), (value, con_value))
        res.update({'{}'.format(value): c.fetchone()[0]})
    return res
Exemplo n.º 2
0
def get_distinct_value(column: str):
    '''
    Return distinct values of a column
    ------
    Args:
        column(str): column's header
        
    Output:
        (list): e.g. [('operator001',), ('operator002',), ('operator003',)]
    '''
    conn = sql_connection(sqlite_file)
    c = conn.cursor()
    c.execute("SELECT DISTINCT {} FROM transactions ORDER BY {}".format(
        column, column))
    return c.fetchall()
Exemplo n.º 3
0
def query_rows(column, value):
    '''
    Query all rows in the table by a certain column,
    turn the result into DataFrame
    ------
    Args: 
        column(str): the name of the column to query
        value(str): query by this value

    Output:
        query_result(df)
    '''
    conn = sql_connection(sqlite_file)
    return pd.read_sql_query(
        'SELECT * FROM transactions WHERE {} = (?)'.format(column),
        conn,
        params=(value, ))
Exemplo n.º 4
0
def get_value_prop(column: str):
    '''
    Return the number of values of a certain column
    ------
    Args:
        column(str): column's header

    Output:
        res(dict): e.g. {'operator001': 47, 'operator002': 26, 'operator003': 26}
    '''
    conn = sql_connection(sqlite_file)
    c = conn.cursor()
    c.execute("SELECT DISTINCT {} FROM transactions ORDER BY {}".format(
        column, column))
    unique_values = c.fetchall()
    res = {}
    for value in unique_values:
        c.execute(
            "SELECT COUNT(*) FROM transactions WHERE {} = ?".format(column),
            value)
        res.update({'{}'.format(value[0]): c.fetchone()[0]})
    return res
Exemplo n.º 5
0
def heatmap_helper():
    '''
    Return parameters for building the heatmap
    ------ 
    Args:
        None 

    Output:
        whole_op_list(list): a list of distinct operators' monikers
        whole_vm_list(list/matrix): a matrix of vm_ids of all vending machines in an order for heatmap visualization 
        whole_tx_list(list/matrix): a matrix of transaction amounts of all vending machines in an order for heatmap visualization 
    '''

    conn = sql_connection(sqlite_file)
    c = conn.cursor()

    c.execute("SELECT DISTINCT operator FROM transactions ORDER BY operator")
    distinct_ops = c.fetchall()
    whole_op_list = []
    whole_vm_list = []
    whole_tx_list = []
    for (op, ) in distinct_ops:
        whole_op_list.append(moniker_name_converter(op))
        vm_list = []
        tx_list = []
        for unit in vm_units:
            if unit['operator']['moniker'] == op:
                vm = unit['moniker']
                vm_id = unit['vm_id']
                vm_list.append(vm_id)
                c.execute(
                    "SELECT COUNT(*) FROM transactions WHERE operator = ? AND vending_machine = ?",
                    (op, vm))
                tx_list.append(c.fetchone()[0])
        whole_vm_list.append(vm_list)
        whole_tx_list.append(tx_list)

    return whole_op_list, whole_vm_list, whole_tx_list