Exemplo n.º 1
0
def DetModel(string):
    from dcprogs.likelihood import DeterminantEq
    string = string.lower().rstrip().lstrip()
    if 'transpose' in string:
        return DetModel(string.replace('transpose', '')).transpose()

    if string == "classic": return DeterminantEq(QMat(string), 1e-4)
    if string == "ch82": return DeterminantEq(QMat(string), 0.2)
    if string == "cb": return DeterminantEq(QMat(string), 0.2)
    if string == "cks": return DeterminantEq(QMat(string), 0.2)
    else: raise Exception("Unknown eG model {0}".format(string))
Exemplo n.º 2
0
def step(context):
    from dcprogs.likelihood import QMatrix, DeterminantEq
    qmatrix = QMatrix(
        [[
            -1.89907444e+02, 0.00000000e+00, 2.17917781e+01, 1.68115666e+02,
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00
        ],
         [
             0.00000000e+00, -5.59197168e+02, 0.00000000e+00, 0.00000000e+00,
             2.28813670e+01, 5.36315801e+02, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00
         ],
         [
             1.70657017e+04, 0.00000000e+00, -1.70657017e+04, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00
         ],
         [
             6.93510518e+04, 0.00000000e+00, 0.00000000e+00, -7.70252433e+04,
             0.00000000e+00, 0.00000000e+00, 7.67419154e+03, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00
         ],
         [
             0.00000000e+00, 1.62124166e+04, 0.00000000e+00, 0.00000000e+00,
             -1.62124166e+04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00
         ],
         [
             0.00000000e+00, 7.15538758e+04, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, -1.06690747e+06, 9.95292553e+05, 0.00000000e+00,
             6.10438859e+01, 0.00000000e+00, 0.00000000e+00
         ],
         [
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.45242879e+04,
             0.00000000e+00, 3.69900307e+05, -3.87202655e+05, 2.77806009e+03,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00
         ],
         [
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 2.01908451e+03, -2.28998927e+03,
             2.70904758e+02, 0.00000000e+00, 0.00000000e+00
         ],
         [
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 2.87990000e+04, 0.00000000e+00, 1.09766807e+02,
             -2.90893700e+04, 1.80603172e+02, 0.00000000e+00
         ],
         [
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             2.19533614e+02, -3.09835200e+02, 9.03015859e+01
         ],
         [
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, 3.29300422e+02, -3.29300422e+02
         ]], 3)
    context.determinant = DeterminantEq(qmatrix, 4e-5).transpose()
Exemplo n.º 3
0
def step(context, tau):
    from sys import exc_info
    from dcprogs.likelihood import DeterminantEq

    try:
        context.determinant = DeterminantEq(context.qmatrix, tau)
    except:
        context.initialization_exception = exc_info()
Exemplo n.º 4
0
def step(context):
    from sys import exc_info
    from dcprogs.likelihood import DeterminantEq

    print(context.matrix)
    try:
        context.determinant = DeterminantEq(context.matrix, context.nopen,
                                            context.tau)
    except:
        context.initialization_exception = exc_info()
Exemplo n.º 5
0
def step(context, n):
    from dcprogs.likelihood import DeterminantEq
    from dcprogs.likelihood.random import qmatrix as random_qmatrix
    context.matrices = []
    context.equations = []
    while len(context.equations) < n:
        try:
            matrix = random_qmatrix()
            equation = DeterminantEq(matrix, 1e-4)
        except:
            continue
        else:
            context.matrices.append(matrix)
            context.equations.append(equation)
Exemplo n.º 6
0
from numpy import all, abs, arange
from dcprogs.likelihood import QMatrix, DeterminantEq, MissedEventsG

# Define parameters.
qmatrix = QMatrix([ [-3050,        50,  3000,      0,    0], 
                    [2./3., -1502./3.,     0,    500,    0], 
                    [   15,         0, -2065,     50, 2000], 
                    [    0,     15000,  4000, -19000,    0], 
                    [    0,         0,    10,      0,  -10] ], 2)
tau = 1e-4
 
# Create eG from prior knowledge of roots
determinant_eq = DeterminantEq(qmatrix, tau)
af_roots = [( -3045.285776037674, 1), (-162.92946543451328, 1)]
fa_roots = [(-17090.192769236815, 1), (-2058.0812921673496, 1), (-0.24356535498785126, 1)]
eG_from_roots = MissedEventsG(determinant_eq, af_roots, determinant_eq.transpose(), fa_roots)

# Create eG automaticallye
eG_automatic = MissedEventsG(qmatrix, tau)

# Checks the three initialization are equivalent at tau
assert all(abs(eG_from_roots.af(tau) - eG_automatic.af(tau)) < 1e-8)
assert all(abs(eG_from_roots.fa(tau) - eG_automatic.fa(tau)) < 1e-8)

# Checks the three initialization are equivalent at different times
# The functions can be applied to arrays. 
times = arange(tau, 10*tau, 0.1*tau)
assert eG_from_roots.af(times).shape == (len(times), 2, 3)
assert eG_from_roots.fa(times).shape == (len(times), 3, 2)
assert all(abs(eG_from_roots.af(times) - eG_automatic.af(times)) < 1e-8)
assert all(abs(eG_from_roots.fa(times) - eG_automatic.fa(times)) < 1e-8)
Exemplo n.º 7
0
from numpy import abs, all, array
from dcprogs import internal_dtype
from dcprogs.likelihood import DeterminantEq, QMatrix

# Define parameters.
matrix = [ [-3050,        50,  3000,      0,    0], 
           [2./3., -1502./3.,     0,    500,    0], 
           [   15,         0, -2065,     50, 2000], 
           [    0,     15000,  4000, -19000,    0], 
           [    0,         0,    10,      0,  -10] ]
qmatrix = QMatrix(matrix, 2)
tau = 1e-4

det0 = DeterminantEq(qmatrix, 1e-4);
det1 = DeterminantEq(matrix, 2, 1e-4);

print("{0!s}\n\n{1!s}".format(det0, det1))

x = [0, -1, -1e2]
assert all(abs(det0(x) - det1(x)) < 1e-8)

roots = array([-3045.285776037674, -162.92946543451328])
assert all(abs(det0(roots)) < 1e-6 * abs(roots))

transpose = det0.transpose()
roots = array( [-17090.192769236815, -2058.0812921673496, -0.24356535498785126],
               dtype=internal_dtype )
assert all(abs(transpose(roots)) < 1e-6 * abs(roots))

print("  * H({0}):\n{1}\n".format(0, det0.H(0)))
print("  * H({0}):\n{1}\n".format(-1e2, det0.H(-1e2)))
Exemplo n.º 8
0
def step(context, event, s, tau):
    import numpy
    from dcprogs.likelihood import DeterminantEq
    s = eval(s, globals().copy(), numpy.__dict__.copy())
    if event == "open": context.result = DeterminantEq(context.qmatrix, tau)(s)
    else: context.result = DeterminantEq(context.qmatrix.transpose(), tau)(s)
Exemplo n.º 9
0
def step(context, s):
    from dcprogs.likelihood import DeterminantEq
    context.result = DeterminantEq(context.matrix, context.nopen,
                                   context.tau)(s)
Exemplo n.º 10
0
from numpy import all
from dcprogs.likelihood import eig
from dcprogs.likelihood import find_upper_bound_for_roots, find_lower_bound_for_roots,        \
                               find_root_intervals, brentq, find_roots, QMatrix, DeterminantEq

qmatrix = QMatrix([ [-3050,        50,  3000,      0,    0], 
                    [2./3., -1502./3.,     0,    500,    0], 
                    [   15,         0, -2065,     50, 2000], 
                    [    0,     15000,  4000, -19000,    0], 
                    [    0,         0,    10,      0,  -10] ], 2)
det = DeterminantEq(qmatrix, 1e-4);


upper_bound = find_upper_bound_for_roots(det);
lower_bound = find_lower_bound_for_roots(det);

get_eigenvalues = lambda s: eig(det.H(s))[0].T
assert all(get_eigenvalues(lower_bound) > lower_bound) 
assert all(get_eigenvalues(upper_bound) < upper_bound) 


print("Root Determination\n"                                         \
      "==================\n\n"                                       \
      "  * Interval containing roots: {lower}, {upper}\n"            \
      "  * Eigenvalues of H at lower bound: {eiglow}\n"              \
      "  * Eigenvalues of H at upper bound: {eigup}\n"               \
      .format( lower=lower_bound, upper=upper_bound,
               eiglow = get_eigenvalues(lower_bound),
               eigup  = get_eigenvalues(upper_bound) ))

intervals = find_root_intervals(det, lower_bound, upper_bound)
Exemplo n.º 11
0
def step(context, doopen, qmatrix, tau):
    from dcprogs.likelihood import DeterminantEq
    context.equation = DeterminantEq(qmatrix, tau)
    if doopen != "open": context.equation = context.equation.transpose()
    print(context.equation)
Exemplo n.º 12
0
from numpy import abs, all, array
from dcprogs import internal_dtype
from dcprogs.likelihood import DeterminantEq, QMatrix

# Define parameters.
matrix = [[-3050, 50, 3000, 0, 0], [2. / 3., -1502. / 3., 0, 500, 0],
          [15, 0, -2065, 50, 2000], [0, 15000, 4000, -19000, 0],
          [0, 0, 10, 0, -10]]
qmatrix = QMatrix(matrix, 2)
tau = 1e-4

det0 = DeterminantEq(qmatrix, 1e-4)
det1 = DeterminantEq(matrix, 2, 1e-4)

print("{0!s}\n\n{1!s}".format(det0, det1))

x = [0, -1, -1e2]
assert all(abs(det0(x) - det1(x)) < 1e-8)

roots = array([-3045.285776037674, -162.92946543451328])
assert all(abs(det0(roots)) < 1e-6 * abs(roots))

transpose = det0.transpose()
roots = array([-17090.192769236815, -2058.0812921673496, -0.24356535498785126],
              dtype=internal_dtype)
assert all(abs(transpose(roots)) < 1e-6 * abs(roots))

print("  * H({0}):\n{1}\n".format(0, det0.H(0)))
print("  * H({0}):\n{1}\n".format(-1e2, det0.H(-1e2)))
print("  * d[sI-H(s)]/ds for s={0}:\n{1}\n".format(0, det0.s_derivative(0)))
print("  * d[sI-H(s)]/ds for s={0}:\n{1}\n".format(-1e2,
Exemplo n.º 13
0
from numpy import all, abs, arange
from dcprogs.likelihood import QMatrix, DeterminantEq, MissedEventsG

# Define parameters.
qmatrix = QMatrix([[-3050, 50, 3000, 0, 0], [2. / 3., -1502. / 3., 0, 500, 0],
                   [15, 0, -2065, 50, 2000], [0, 15000, 4000, -19000, 0],
                   [0, 0, 10, 0, -10]], 2)
tau = 1e-4

# Create eG from prior knowledge of roots
determinant_eq = DeterminantEq(qmatrix, tau)
af_roots = [(-3045.285776037674, 1), (-162.92946543451328, 1)]
fa_roots = [(-17090.192769236815, 1), (-2058.0812921673496, 1),
            (-0.24356535498785126, 1)]
eG_from_roots = MissedEventsG(determinant_eq, af_roots,
                              determinant_eq.transpose(), fa_roots)

# Create eG automaticallye
eG_automatic = MissedEventsG(qmatrix, tau)

# Checks the three initialization are equivalent at tau
assert all(abs(eG_from_roots.af(tau) - eG_automatic.af(tau)) < 1e-8)
assert all(abs(eG_from_roots.fa(tau) - eG_automatic.fa(tau)) < 1e-8)

# Checks the three initialization are equivalent at different times
# The functions can be applied to arrays.
times = arange(tau, 10 * tau, 0.1 * tau)
assert eG_from_roots.af(times).shape == (len(times), 2, 3)
assert eG_from_roots.fa(times).shape == (len(times), 3, 2)
assert all(abs(eG_from_roots.af(times) - eG_automatic.af(times)) < 1e-8)
assert all(abs(eG_from_roots.fa(times) - eG_automatic.fa(times)) < 1e-8)