Exemplo n.º 1
0
def optimFunc(individual):

    # for i in range(1000):
    f3 = benchmarks.rastrigin(individual)
    f1, f2 = benchmarks.zdt1(individual)
    out = (f1, f2) + f3
    # print os.getpid()
    return out
Exemplo n.º 2
0
def ackley_arg0(sol):
    
    X,Y = sol[0], sol[1]
    Z = np.zeros(X.shape)
    
    for i in xrange(X.shape[0]):
        Z[i] = benchmarks.rastrigin((X[i],Y[i]))[0]
    return Z
Exemplo n.º 3
0
def ackley_arg0(sol):

    X, Y = sol[0], sol[1]
    Z = np.zeros(X.shape)

    for i in range(X.shape[0]):
        Z[i] = benchmarks.rastrigin((X[i], Y[i]))[0]
    return Z
Exemplo n.º 4
0
def main():
    numpy.random.seed(64)

    # The CMA-ES algorithm
    strategy = cma.Strategy(centroid=[5.0] * N, sigma=3.0, lambda_=20 * N)
    toolbox.register("generate", strategy.generate, creator.Individual)
    toolbox.register("update", strategy.update)

    halloffame = tools.HallOfFame(1)

    halloffame_array = []
    C_array = []
    centroid_array = []
    for gen in range(NGEN):
        # 新たな世代の個体群を生成
        population = toolbox.generate()
        # 個体群の評価
        fitnesses = toolbox.map(toolbox.evaluate, population)
        for ind, fit in zip(population, fitnesses):
            ind.fitness.values = fit

        # 個体群の評価から次世代の計算のためのパラメタ更新
        toolbox.update(population)

        # hall-of-fameの更新
        halloffame.update(population)

        halloffame_array.append(halloffame[0])
        C_array.append(strategy.C)
        centroid_array.append(strategy.centroid)

    # 計算結果を描画
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    from matplotlib.patches import Ellipse
    plt.ion()
    fig = plt.figure()
    ax = fig.add_subplot(111)
    X = numpy.arange(-5.12, 5.12, 0.1)
    Y = numpy.arange(-5.12, 5.12, 0.1)
    X, Y = numpy.meshgrid(X, Y)
    Z = [[benchmarks.rastrigin((x, y))[0] for x, y in zip(xx, yy)]
         for xx, yy in zip(X, Y)]
    ax.imshow(Z, cmap=cm.jet, extent=[-5.12, 5.12, -5.12, 5.12])
    for x, sigma, xmean in zip(halloffame_array, C_array, centroid_array):
        # 多変量分布の分散を楕円で描画
        Darray, Bmat = numpy.linalg.eigh(sigma)
        ax.add_artist(
            Ellipse((xmean[0], xmean[1]),
                    numpy.sqrt(Darray[0]),
                    numpy.sqrt(Darray[1]),
                    numpy.arctan2(Bmat[1, 0], Bmat[0, 0]) * 180 / numpy.pi,
                    color="g",
                    alpha=0.7))
        ax.plot([x[0]], [x[1]], c='r', marker='o')
        ax.axis([-5.12, 5.12, -5.12, 5.12])
        plt.draw()
    plt.show(block=True)
Exemplo n.º 5
0
def rastrigin_arg_vari(sol):
    #D1,D2,D3,D4,D5,D6,D7,D8,D9,D10 = sol[0], sol[1], sol[2], sol[3], sol[4], sol[5], sol[6], sol[7], sol[8], sol[9]
    Z = np.zeros(sol.shape[0])
    #print sol.shape[0]
    for i in xrange(sol.shape[0]):
        #print sol[i]
        Z[i] = benchmarks.rastrigin(sol[i])[0]
        #print Z[i]
    return Z
Exemplo n.º 6
0
    def __init__(self, problem_idx, value_threshold):
        SyntheticEnv.__init__(self, problem_idx)
        self.name = 'synthetic_rastrigin'
        if problem_idx == 0:
            self.dim_x = 3
            self.feasible_action_value_threshold = -10
        elif problem_idx == 1:
            self.dim_x = 10
            self.feasible_action_value_threshold = value_threshold
        elif problem_idx == 2:
            self.dim_x = 20
            self.feasible_action_value_threshold = -100

        self.feasible_reward = 100
        self.reward_function = lambda sol: -benchmarks.rastrigin(sol)[0]
def get_objective_function(sol):
    if obj_fcn == 'shekel':
        return shekel(sol, A, C)[0]
    elif obj_fcn == 'schwefel':
        return -benchmarks.schwefel(sol)[0]
    elif obj_fcn == 'griewank':
        return -benchmarks.griewank(sol)[0]
    elif obj_fcn == 'rastrigin':
        return -benchmarks.rastrigin(sol)[0]
    elif obj_fcn == 'ackley':
        return -benchmarks.ackley(sol)[0]
    elif obj_fcn == 'rosenbrock':
        return -benchmarks.rosenbrock(sol)[0]
    elif obj_fcn == 'schaffer':
        return -benchmarks.schaffer(sol)[0]
    else:
        print "wrong function name"
        sys.exit(-1)
Exemplo n.º 8
0
def rastrigin_arg0(sol):
    return benchmarks.rastrigin(sol)[0]
Exemplo n.º 9
0
def rastrigin_arg0(sol):
    return benchmarks.rastrigin(sol)[0]
Exemplo n.º 10
0
def MOFitnessFunc(part):
    code = 0 if is_valid(part) else 1
    fitValues = (benchmarks.sphere(part)[0], benchmarks.rastrigin(part)[0])
    #fitValues = benchmarks.fonseca(part)
    return fitValues, array([code]), array([0]), array([1.0]) ## cost always 1
Exemplo n.º 11
0
def rastrigin_arg0(sol):
    return benchmarks.rastrigin(convertArrToFloat(sol))
Exemplo n.º 12
0
def final(x):
    a = benchmarks.rastrigin(x)
    print "rastrigin: ",a
    return (a > 1)
Exemplo n.º 13
0
 def calFit(self, ind):
     return benchmarks.rastrigin(ind)[0]
Exemplo n.º 14
0
 def evalBenchmark(individual):
     return benchmarks.rastrigin(individual)
Exemplo n.º 15
0
 def evaluate(self, x):
     return rastrigin(x)[0]
Exemplo n.º 16
0
def rastrigin_on_cube(u: [float]) -> float:
    # https://deap.readthedocs.io/en/master/api/benchmarks.html#deap.benchmarks.rastrigin
    u_squished = [10.24 * (ui**1.1 - 0.5) for ui in u]
    return 0.01 * benchmarks.rastrigin(u_squished)[0]
Exemplo n.º 17
0
def rastrigin(x):
    return benchmarks.rastrigin(x)[0]
Exemplo n.º 18
0
def objective(X):
    X = np.atleast_2d(X)
    return np.array([benchmarks.rastrigin(x)[0] for x in X])