def main(args): savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) # load test images testdata = datasets.TestData(args.inputpath, iscrop=args.iscrop, face_detector=args.detector) # run DECA deca_cfg.model.use_tex = args.useTex deca = DECA(config=deca_cfg, device=device) # for i in range(len(testdata)): for i in tqdm(range(len(testdata))): name = testdata[i]['imagename'] images = testdata[i]['image'].to(device)[None, ...] codedict = deca.encode(images) opdict, visdict = deca.decode(codedict) #tensor if args.saveDepth or args.saveKpt or args.saveObj or args.saveMat or args.saveImages: os.makedirs(os.path.join(savefolder, name), exist_ok=True) # -- save results if args.saveDepth: depth_image = deca.render.render_depth( opdict['transformed_vertices']).repeat(1, 3, 1, 1) visdict['depth_images'] = depth_image cv2.imwrite(os.path.join(savefolder, name, name + '_depth.jpg'), util.tensor2image(depth_image[0])) if args.saveKpt: np.savetxt(os.path.join(savefolder, name, name + '_kpt2d.txt'), opdict['landmarks2d'][0].cpu().numpy()) np.savetxt(os.path.join(savefolder, name, name + '_kpt3d.txt'), opdict['landmarks3d'][0].cpu().numpy()) if args.saveObj: deca.save_obj(os.path.join(savefolder, name, name + '.obj'), opdict) if args.saveMat: opdict = util.dict_tensor2npy(opdict) savemat(os.path.join(savefolder, name, name + '.mat'), opdict) if args.saveVis: cv2.imwrite(os.path.join(savefolder, 'vis_' + name + '.jpg'), deca.visualize(visdict)) cv2.imwrite( os.path.join(savefolder, 'detailed_images_' + name + '.jpg'), deca.visualize_detailed_image(visdict)) if args.saveImages: for vis_name in [ 'inputs', 'rendered_images', 'albedo_images', 'shape_images', 'shape_detail_images' ]: if vis_name not in visdict.keys(): continue image = util.tensor2image(visdict[vis_name][0]) cv2.imwrite( os.path.join(savefolder, name, name + '_' + vis_name + '.jpg'), util.tensor2image(visdict[vis_name][0])) print(f'-- please check the results in {savefolder}')
def main(args): # if args.rasterizer_type != 'standard': # args.render_orig = False savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) # load test images testdata = datasets.TestData(args.inputpath, iscrop=args.iscrop, face_detector=args.detector, sample_step=args.sample_step) # run DECA deca_cfg.model.use_tex = args.useTex deca_cfg.rasterizer_type = args.rasterizer_type deca_cfg.model.extract_tex = args.extractTex deca = DECA(config = deca_cfg, device=device) # for i in range(len(testdata)): for i in tqdm(range(len(testdata))): name = testdata[i]['imagename'] images = testdata[i]['image'].to(device)[None,...] with torch.no_grad(): codedict = deca.encode(images) opdict, visdict = deca.decode(codedict) #tensor if args.render_orig: tform = testdata[i]['tform'][None, ...] tform = torch.inverse(tform).transpose(1,2).to(device) original_image = testdata[i]['original_image'][None, ...].to(device) _, orig_visdict = deca.decode(codedict, render_orig=True, original_image=original_image, tform=tform) orig_visdict['inputs'] = original_image if args.saveDepth or args.saveKpt or args.saveObj or args.saveMat or args.saveImages: os.makedirs(os.path.join(savefolder, name), exist_ok=True) # -- save results if args.saveDepth: depth_image = deca.render.render_depth(opdict['trans_verts']).repeat(1,3,1,1) visdict['depth_images'] = depth_image cv2.imwrite(os.path.join(savefolder, name, name + '_depth.jpg'), util.tensor2image(depth_image[0])) if args.saveKpt: np.savetxt(os.path.join(savefolder, name, name + '_kpt2d.txt'), opdict['landmarks2d'][0].cpu().numpy()) np.savetxt(os.path.join(savefolder, name, name + '_kpt3d.txt'), opdict['landmarks3d'][0].cpu().numpy()) if args.saveObj: deca.save_obj(os.path.join(savefolder, name, name + '.obj'), opdict) if args.saveMat: opdict = util.dict_tensor2npy(opdict) savemat(os.path.join(savefolder, name, name + '.mat'), opdict) if args.saveVis: cv2.imwrite(os.path.join(savefolder, name + '_vis.jpg'), deca.visualize(visdict)) if args.render_orig: cv2.imwrite(os.path.join(savefolder, name + '_vis_original_size.jpg'), deca.visualize(orig_visdict)) if args.saveImages: for vis_name in ['inputs', 'rendered_images', 'albedo_images', 'shape_images', 'shape_detail_images', 'landmarks2d']: if vis_name not in visdict.keys(): continue image = util.tensor2image(visdict[vis_name][0]) cv2.imwrite(os.path.join(savefolder, name, name + '_' + vis_name +'.jpg'), util.tensor2image(visdict[vis_name][0])) if args.render_orig: image = util.tensor2image(orig_visdict[vis_name][0]) cv2.imwrite(os.path.join(savefolder, name, 'orig_' + name + '_' + vis_name +'.jpg'), util.tensor2image(orig_visdict[vis_name][0])) print(f'-- please check the results in {savefolder}')
def main(cfg): # creat folders os.makedirs(os.path.join(cfg.output_dir, cfg.train.log_dir), exist_ok=True) os.makedirs(os.path.join(cfg.output_dir, cfg.train.vis_dir), exist_ok=True) os.makedirs(os.path.join(cfg.output_dir, cfg.train.val_vis_dir), exist_ok=True) with open( os.path.join(cfg.output_dir, cfg.train.log_dir, 'full_config.yaml'), 'w') as f: yaml.dump(cfg, f, default_flow_style=False) shutil.copy(cfg.cfg_file, os.path.join(cfg.output_dir, 'config.yaml')) # cudnn related setting cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True # start training # deca model from decalib.deca import DECA from decalib.trainer import Trainer cfg.rasterizer_type = 'pytorch3d' deca = DECA(cfg) trainer = Trainer(model=deca, config=cfg) ## start train trainer.fit()
def mead(args): mead_data = args.data device = args.device savefolder = args.savefolder t = tarfile.open(mead_data) for member in t.getmembers(): if 'front/' in member.name and '.mp4' in member.name: t.extract(member, cur_dir) video_name = f'{cur_dir}/{member.name}' if args.gen_audio: clip = mp.VideoFileClip(video_name) audio_path = os.path.join( savefolder, member.name.replace('.mp4', '.wav', 1)[len('video/front/'):]) util.check_mkdir(os.path.dirname(audio_path)) clip.audio.write_audiofile(audio_path) testdata = datasets.TestData(video_name, iscrop=True, face_detector=args.detector) os.remove(video_name) deca_cfg.model.use_tex = False deca = DECA(config=deca_cfg, device=device) save_path = os.path.join(savefolder, member.name[len("video/front/"):-4]) Path(save_path).mkdir(parents=True, exist_ok=True) for i in tqdm(range(len(testdata))): images = testdata[i]['image'].to(device)[None, ...] codedict = deca.encode(images) opdict, visdict = deca.decode(codedict) #tensor deca.save_obj(save_path + '/%04d.obj' % i, opdict, simple=True) shutil.rmtree(video_name.split('.')[0]) print(f'-- please check the results in {savefolder}')
def create_deca(args, video, ext_dir='', audio_path=''): device = args.device savefolder = args.savefolder if args.gen_audio and audio_path != '': clip = mp.VideoFileClip(video) util.check_mkdir(os.path.dirname(audio_path)) clip.audio.write_audiofile(audio_path) testdata = datasets.TestData(video, iscrop=True, face_detector=args.detector) os.remove(video) deca_cfg.model.use_tex = False deca = DECA(config=deca_cfg, device=device) data_file = os.path.join(savefolder, video[len(ext_dir) + 1:-4]) + '.pkl' Path(os.path.dirname(data_file)).mkdir(parents=True, exist_ok=True) obj_path = os.path.join(savefolder, video[len(ext_dir) + 1:-4]) if args.save_obj: Path(obj_path).mkdir(parents=True, exist_ok=True) vertices = [] for i in tqdm(range(len(testdata))): images = testdata[i]['image'].to(device)[None, ...] codedict = deca.encode(images) opdict, visdict = deca.decode(codedict) vertices.append(opdict['vertices']) if args.save_obj: deca.save_obj(obj_path + '/%04d.obj' % i, opdict, simple=True) torch.save(torch.cat(vertices), data_file) shutil.rmtree(video.split('.')[0]) print(f'-- please check the results in {savefolder}')
def main(args): savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) # load test images testdata = datasets.TestData(args.image_path, iscrop=args.iscrop, face_detector=args.detector) expdata = datasets.TestData(args.exp_path, iscrop=args.iscrop, face_detector=args.detector) # run DECA i = 0 deca = DECA(device=device) name = testdata[i]['imagename'] savepath = '{}/{}.jpg'.format(savefolder, name) images = testdata[i]['image'].to(device)[None, ...] codedict = deca.encode(images) _, visdict = deca.decode(codedict) visdict = {x: visdict[x] for x in ['inputs', 'shape_detail_images']} # -- expression transfer # exp code from image exp_images = expdata[i]['image'].to(device)[None, ...] exp_codedict = deca.encode(exp_images) # transfer exp code codedict['pose'][:, 3:] = exp_codedict['pose'][:, 3:] codedict['exp'] = exp_codedict['exp'] _, exp_visdict = deca.decode(codedict) visdict['transferred_shape'] = exp_visdict['shape_detail_images'] cv2.imwrite(os.path.join(savefolder, name + '_animation.jpg'), deca.visualize(visdict)) print(f'-- please check the results in {savefolder}')
def main(args): savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) # load test images testdata = datasets.TestData(args.image_path, iscrop=args.iscrop, face_detector=args.detector) expdata = datasets.TestData(args.exp_path, iscrop=args.iscrop, face_detector=args.detector) # run DECA deca_cfg.model.use_tex = args.useTex deca = DECA(config = deca_cfg, device=device) # identity reference i = 0 name = testdata[i]['imagename'] savepath = '{}/{}.jpg'.format(savefolder, name) images = testdata[i]['image'].to(device)[None,...] id_codedict = deca.encode(images) id_opdict, id_visdict = deca.decode(id_codedict) id_visdict = {x:id_visdict[x] for x in ['inputs', 'shape_detail_images']} # -- expression transfer # exp code from image exp_images = expdata[i]['image'].to(device)[None,...] exp_codedict = deca.encode(exp_images) # transfer exp code id_codedict['pose'][:,3:] = exp_codedict['pose'][:,3:] id_codedict['exp'] = exp_codedict['exp'] transfer_opdict, transfer_visdict = deca.decode(id_codedict) id_visdict['transferred_shape'] = transfer_visdict['shape_detail_images'] cv2.imwrite(os.path.join(savefolder, name + '_animation.jpg'), deca.visualize(id_visdict)) transfer_opdict['uv_texture_gt'] = id_opdict['uv_texture_gt'] if args.saveDepth or args.saveKpt or args.saveObj or args.saveMat or args.saveImages: os.makedirs(os.path.join(savefolder, name, 'reconstruction'), exist_ok=True) os.makedirs(os.path.join(savefolder, name, 'animation'), exist_ok=True) # -- save results image_name = name for save_type in ['reconstruction', 'animation']: if save_type == 'reconstruction': visdict = id_codedict; opdict = id_opdict else: visdict = transfer_visdict; opdict = transfer_opdict if args.saveDepth: depth_image = deca.render.render_depth(opdict['transformed_vertices']).repeat(1,3,1,1) visdict['depth_images'] = depth_image cv2.imwrite(os.path.join(savefolder, name, save_type, name + '_depth.jpg'), util.tensor2image(depth_image[0])) if args.saveKpt: np.savetxt(os.path.join(savefolder, name, save_type, name + '_kpt2d.txt'), opdict['landmarks2d'][0].cpu().numpy()) np.savetxt(os.path.join(savefolder, name, save_type, name + '_kpt3d.txt'), opdict['landmarks3d'][0].cpu().numpy()) if args.saveObj: deca.save_obj(os.path.join(savefolder, name, save_type, name + '.obj'), opdict) if args.saveMat: opdict = util.dict_tensor2npy(opdict) savemat(os.path.join(savefolder, name, save_type, name + '.mat'), opdict) if args.saveImages: for vis_name in ['inputs', 'rendered_images', 'albedo_images', 'shape_images', 'shape_detail_images']: if vis_name not in visdict.keys(): continue image =util.tensor2image(visdict[vis_name][0]) cv2.imwrite(os.path.join(savefolder, name, save_type, name + '_' + vis_name +'.jpg'), util.tensor2image(visdict[vis_name][0])) print(f'-- please check the results in {savefolder}')
def main(args): savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) # load test images testdata = datasets.TestData(args.inputpath, iscrop=args.iscrop, face_detector=args.detector) expdata = datasets.TestData(args.exp_path, iscrop=args.iscrop, face_detector=args.detector) # DECA deca_cfg.rasterizer_type = args.rasterizer_type deca = DECA(config=deca_cfg, device=device) visdict_list_list = [] for i in range(len(testdata)): name = testdata[i]['imagename'] images = testdata[i]['image'].to(device)[None, ...] with torch.no_grad(): codedict = deca.encode(images) opdict, visdict = deca.decode(codedict) #tensor ### show shape with different views and expressions visdict_list = [] max_yaw = 30 yaw_list = list(range(0, max_yaw, 5)) + list( range(max_yaw, -max_yaw, -5)) + list(range(-max_yaw, 0, 5)) for k in yaw_list: #jaw angle from -50 to 50 ## yaw angle euler_pose = torch.randn((1, 3)) euler_pose[:, 1] = k #torch.rand((self.batch_size))*160 - 80 euler_pose[:, 0] = 0 #(torch.rand((self.batch_size))*60 - 30)*(2./euler_pose[:,1].abs()) euler_pose[:, 2] = 0 #(torch.rand((self.batch_size))*60 - 30)*(2./euler_pose[:,1].abs()) global_pose = batch_euler2axis(deg2rad(euler_pose[:, :3].cuda())) codedict['pose'][:, :3] = global_pose codedict['cam'][:, :] = 0. codedict['cam'][:, 0] = 8 _, visdict_view = deca.decode(codedict) visdict = { x: visdict[x] for x in ['inputs', 'shape_detail_images'] } visdict['pose'] = visdict_view['shape_detail_images'] visdict_list.append(visdict) euler_pose = torch.zeros((1, 3)) global_pose = batch_euler2axis(deg2rad(euler_pose[:, :3].cuda())) codedict['pose'][:, :3] = global_pose for (i, k) in enumerate(range(0, 31, 2)): #jaw angle from -50 to 50 # expression: jaw pose euler_pose = torch.randn((1, 3)) euler_pose[:, 0] = k #torch.rand((self.batch_size))*160 - 80 euler_pose[:, 1] = 0 #(torch.rand((self.batch_size))*60 - 30)*(2./euler_pose[:,1].abs()) euler_pose[:, 2] = 0 #(torch.rand((self.batch_size))*60 - 30)*(2./euler_pose[:,1].abs()) jaw_pose = batch_euler2axis(deg2rad(euler_pose[:, :3].cuda())) codedict['pose'][:, 3:] = jaw_pose _, visdict_view = deca.decode(codedict) visdict_list[i]['exp'] = visdict_view['shape_detail_images'] count = i for (i, k) in enumerate(range(len(expdata))): #jaw angle from -50 to 50 # expression: jaw pose exp_images = expdata[i]['image'].to(device)[None, ...] exp_codedict = deca.encode(exp_images) # transfer exp code codedict['pose'][:, 3:] = exp_codedict['pose'][:, 3:] codedict['exp'] = exp_codedict['exp'] _, exp_visdict = deca.decode(codedict) visdict_list[i + count]['exp'] = exp_visdict['shape_detail_images'] visdict_list_list.append(visdict_list) ### write gif writer = imageio.get_writer(os.path.join(savefolder, 'teaser.gif'), mode='I') for i in range(len(yaw_list)): grid_image_list = [] for j in range(len(testdata)): grid_image = deca.visualize(visdict_list_list[j][i]) grid_image_list.append(grid_image) grid_image_all = np.concatenate(grid_image_list, 0) grid_image_all = rescale( grid_image_all, 0.6, multichannel=True) # resize for showing in github writer.append_data(grid_image_all[:, :, [2, 1, 0]]) print(f'-- please check the teaser figure in {savefolder}')
def main(args): savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) print(str(args.iscrop)) # load test images testdata = datasets.TestData(args.inputpath, iscrop=args.iscrop, face_detector=args.detector) test_data_loader = DataLoader(testdata, batch_size=3, num_workers=4, shuffle=True, pin_memory=True, drop_last=True) # run DECA deca_cfg.model.use_tex = args.useTex if args.model_path != '': deca_cfg.pretrained_modelpath = args.model_path deca = DECA(config=deca_cfg, device=device, eval_detail=False) # for i in range(len(testdata)): for i, sample in enumerate(test_data_loader): names = sample['imagename'] images = sample['image'].to(device) codedict = deca.encode(images) opdict, visdict = deca.decode(codedict) #tensor if args.saveDepth or args.saveKpt or args.saveObj or args.saveMat or args.saveImages: for name in names: os.makedirs(os.path.join(savefolder, name), exist_ok=True) # -- save results if args.saveDepth: depth_images = deca.render.render_depth( opdict['transformed_vertices']).repeat(1, 3, 1, 1) visdict['depth_images'] = depth_images for j in range(len(names)): cv2.imwrite( os.path.join(savefolder, names[j], names[j] + '_depth.jpg'), util.tensor2image(depth_image[j])) if args.saveKpt: for j in range(len(names)): np.savetxt( os.path.join(savefolder, names[j], names[j] + '_kpt2d.txt'), opdict['landmarks2d'][j].cpu().numpy()) np.savetxt( os.path.join(savefolder, names[j], names[j] + '_kpt3d.txt'), opdict['landmarks3d'][j].cpu().numpy()) if args.saveObj: deca.save_obj(savefolder, names, opdict) if args.saveMat: opdict = util.dict_tensor2npy(opdict) savemat(os.path.join(savefolder, name, name + '.mat'), opdict) if args.saveVis: vis_imgs = deca.visualize(visdict) for j in range(len(names)): cv2.imwrite(os.path.join(savefolder, names[j] + '_vis.jpg'), vis_imgs[j]) if args.saveImages: for vis_name in [ 'inputs', 'rendered_images', 'albedo_images', 'shape_images', 'shape_detail_images' ]: if vis_name not in visdict.keys(): continue image = util.tensor2image(visdict[vis_name][0]) cv2.imwrite( os.path.join(savefolder, name, name + '_' + vis_name + '.jpg'), util.tensor2image(visdict[vis_name][0])) print(f'-- please check the results in {savefolder}')