Exemplo n.º 1
0
def classify(res,m,n,omega,lastBit):
    # Initialise the subsets to empty lists and the counters to 0
    # (for each subset)
    r0 = [0,0]
    c0 = [0,0]
    r1 = [0,0]
    c1 = [0,0]

    # Classify each message depending if there was a reduction or not
    for i in range(0,sampleSize):
        # assuming that the bit is 1
        #print lastBit
        #print i
        #print len(res[0][i])
        temp1 = montMul(res[lastBit][i][-1],m[i],n,omega) #multiplication
        
        temp1,red = montMulRed(temp1,temp1,n,omega)      #squaring
        r1[red]+=t[i]
        c1[red]+=1
        
        #assuming that the bit is 0
        temp0,red = montMulRed(res[lastBit][i][-1],res[lastBit][i][-1],n,omega) #squaring
        r0[red]+=t[i]
        c0[red]+=1
        
        res[1][i].append(temp1)
        res[0][i].append(temp0)
   
    # Calculate the difference between the average times when we assume that
    # last bit is 0 and when the last bit is 1
    u0 = abs(float(r0[1])/c0[1] - float(r0[0])/c0[0])
    u1 = abs(float(r1[1])/c1[1] - float(r1[0])/c1[0])
    return u0,u1,res
def getRandomMessages():
    messages = [] # save the sample cyphers in Mont form
    times = []    # time taken to decrypt the cypher
    x = []        # temporary memory to save the partial result of the partial exponentiation
    for i in range (0,sampleSize):
        if i%1500==0:
            print i
        r = random.getrandbits(n_length)
        while r>=n:
            r = random.getrandbits(n_length)
        times.append(oracle(r))
        messages.append(montMul(r,rho2,n,omega)) #convert the message in Mont form and add it to the list
        x.append(messages[i])
        x[i] = montMul(x[i],x[i],n,omega)
    print "done generating random messages"
    return messages,times,x;
Exemplo n.º 3
0
def resample (m,t,res,sampleSize):
    for i in range(0,len(m)):
        res[0][i] = deque([],history_len)
        res[1][i] = deque([],history_len)
        res[1][i].append(montMul(m[i],m[i],n,omega))
        res[0][i].append(0)
    for i in range(len(m),sampleSize):
        r = random.getrandbits(n_length)
        while r>=n:
            r = random.getrandbits(n_length)
        t.append(oracle(r))
        m.append(montMul(r,rho2,n,omega)) #convert the message in Mont form and add it to the list
        res[0].append(deque([],history_len))
        res[1].append(deque([],history_len))
        res[1][i].append(montMul(m[i],m[i],n,omega))
        res[0][i].append(0)
    return m,t,res
Exemplo n.º 4
0
def getRandomMessages(sampleSize):
    messages = [] # save the sample ciphers in Mont form
    times = []    # time taken to decrypt the cipher
    res = [[],[]]    # temporary memory to save the partial result of the partial exponentiation
    for i in range (0,sampleSize):
        if i%1500==0:
            print i
        r = random.getrandbits(n_length)
        while r>=n:
            r = random.getrandbits(n_length)
        times.append(oracle(r))
        messages.append(montMul(r,rho2,n,omega)) #convert the message in Mont form and add it to the list
        res[0].append(deque([],history_len))
        res[1].append(deque([],history_len))
        res[1][i].append(montMul(messages[i],messages[i],n,omega))
        res[0][i].append(0)
        
    return messages,times,res
Exemplo n.º 5
0
def test_errorFix(res,k,m,t):
    r0 = [0,0]
    c0 = [0,0]
    r1 = [0,0]
    c1 = [0,0]
    lastBit = k&1
    confidence = deque([],average_n)
    temp0 = [0]*sampleSize
    temp1 = [0]*sampleSize
    x=[]
    for i in range(0,sampleSize):
        x.append(res[lastBit][i][-1])
    
    for j in range(0,test_length):
        r0 = [0,0]
        c0 = [0,0]
        r1 = [0,0]
        c1 = [0,0]
        for i in range(0,sampleSize):
            temp = montMul(x[i],m[i],n,omega)
            temp1[i],red = montMulRed(temp,temp,n,omega)
            r1[red]+=t[i]
            c1[red]+=1
            
            temp0[i],red = montMulRed(x[i],x[i],n,omega)
            r0[red]+=t[i]
            c0[red]+=1
            
        u0 = abs(float(r0[1])/c0[1] - float(r0[0])/c0[0])
        u1 = abs(float(r1[1])/c1[1] - float(r1[0])/c1[0])
        confidence.append(abs(u0-u1))
        k<<=1
        if u1>u0:
            k+=1
            x,temp1 = temp1,x
        else:
            x,temp0 = temp0,x
        # If the average confidence level for the past "average_n" iterations
        # is under threshold_difference return false 
        if len(confidence)==average_n:
            if sum(confidence)/len(confidence)<threshold_difference:
                return False
                
    return True
def main(n,e):
    m,t,x = getRandomMessages() # get the random ciphers (in Mont form), 
                                # corresponding times and partial results of the 
                                # partial exponentiation
    # Temporary memory to save partial results of the exponentiation when 
    # assuming the last bit of the key is 0 or 1
    res1 = [0]*sampleSize 
    res0 = [0]*sampleSize
    
    key_guess = 1;
    B = 1 #number of bits in the guessed key
    H = 1 #hamming weight of the guessed key
    
    while B+H < maxLength:
        print B
        # Initialise the subsets to empty lists and the counters to 0
        # (for each subset)
        r0 = [0,0]
        c0 = [0,0]
        r1 = [0,0]
        c1 = [0,0]
        
        # Classify each message depending if there was a reduction or not
        for i in range(0,sampleSize):
            # assuming that the bit is 1
            res1[i] = montMul(x[i],m[i],n,omega) #multiplication 
            res1[i],red = montMulRed(res1[i],res1[i],n,omega) #squaring
            r1[red]+=t[i]
            c1[red]+=1
            
            #assuming that the bit is 0
            res0[i],red = montMulRed(x[i],x[i],n,omega) #squaring
            r0[red]+=t[i]
            c0[red]+=1
       
        # Calculate the difference between the average times when we assume that
        # last bit is 0 and when the last bit is 1
        u1 = abs(float(r1[1])/c1[1] - float(r1[0])/c1[0])
        u0 = abs(float(r0[1])/c0[1] - float(r0[0])/c0[0])

        
        
        # some threshold conditions
        if abs(u0-u1)<threshold_difference:
            print "The difference between deviation of means is not big enough"
            return -1
        if u1>u0 and u1<threshold_individual:
            print "The timing difference between M1 and M2 is not big enough"
   
            return -1
        if u0>u1 and u0<threshold_individual:
            print "The timing difference between M3 and M4 is not big enough"

            return -1
        
        # Append the guessed bit to the key and save the partial results of the 
        # exponentiation in x and save the partial results in x
        key_guess = key_guess<<1
        if u1>u0:
            key_guess +=1
            H+=1
            x,res1 = res1,x
        else:
            x,res0 = res0,x
        B+=1
            
        # Test the key by appending a '1' to it
        # The last bit of d is '1' because gcd(d,phi(N)) = 1
        key_temp = (key_guess<<1) | 1
        if testKey(key_temp):
            return key_temp
        print "1011111110001100011110011001001001001010111110011101001010000101"
        print "{0:b}".format(key_guess)
        print "B="+str(B)+" H="+str(H)
    return -1