Exemplo n.º 1
0
def build_RF_RF(Nx, Ny, dealias_x, dealias_y):
    c = coords.CartesianCoordinates('x', 'y')
    d = distributor.Distributor((c, ))
    xb = basis.RealFourier(c.coords[0],
                           size=Nx,
                           bounds=(0, np.pi),
                           dealias=dealias_x)
    yb = basis.RealFourier(c.coords[1],
                           size=Ny,
                           bounds=(0, np.pi),
                           dealias=dealias_y)
    x = xb.local_grid(dealias_x)
    y = yb.local_grid(dealias_y)
    return c, d, xb, yb, x, y
Exemplo n.º 2
0
def build_3d_box(Nx, Ny, Nz, dealias, dtype, k=0):
    c = coords.CartesianCoordinates('x', 'y', 'z')
    d = distributor.Distributor((c,))
    if dtype == np.complex128:
        xb = basis.ComplexFourier(c.coords[0], size=Nx, bounds=(0, Lx))
        yb = basis.ComplexFourier(c.coords[1], size=Ny, bounds=(0, Ly))
    elif dtype == np.float64:
        xb = basis.RealFourier(c.coords[0], size=Nx, bounds=(0, Lx))
        yb = basis.RealFourier(c.coords[1], size=Ny, bounds=(0, Ly))
    zb = basis.ChebyshevT(c.coords[2], size=Nz, bounds=(0, Lz))
    b = (xb, yb, zb)
    x = xb.local_grid(1)
    y = yb.local_grid(1)
    z = zb.local_grid(1)
    return c, d, b, x, y, z
Exemplo n.º 3
0
def test_fourier_convert_constant(N, bounds, dtype, layout):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c, ))
    if dtype == np.float64:
        b = basis.RealFourier(c, size=N, bounds=bounds)
    elif dtype == np.complex128:
        b = basis.ComplexFourier(c, size=N, bounds=bounds)
    fc = field.Field(dist=d, dtype=dtype)
    fc['g'] = 1
    fc[layout]
    f = operators.convert(fc, (b, )).evaluate()
    assert np.allclose(fc['g'], f['g'])
Exemplo n.º 4
0
def test_fourier_integrate(N, bounds, dtype):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c, ))
    if dtype == np.float64:
        b = basis.RealFourier(c, size=N, bounds=bounds)
    elif dtype == np.complex128:
        b = basis.ComplexFourier(c, size=N, bounds=bounds)
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b, ), dtype=dtype)
    k = 4 * np.pi / (bounds[1] - bounds[0])
    f['g'] = 1 + np.sin(k * x + 0.1)
    fi = operators.Integrate(f, c).evaluate()
    assert np.allclose(fi['g'], bounds[1] - bounds[0])
Exemplo n.º 5
0
def test_RF_scalar_roundtrip(N, dealias):
    if comm.size == 1:
        c = coords.Coordinate('x')
        d = distributor.Distributor([c])
        xb = basis.RealFourier(c, size=N, bounds=(0, 1), dealias=dealias)
        x = xb.local_grid(dealias)
        # Scalar transforms
        u = field.Field(dist=d, bases=(xb, ), dtype=np.float64)
        u.preset_scales(dealias)
        u['g'] = ug = np.cos(2 * np.pi * x + np.pi / 4)
        u['c']
        assert np.allclose(u['g'], ug)
    else:
        pytest.skip("Can only test 1D transform in serial")
Exemplo n.º 6
0
def test_real_fourier_libraries_forward(N, dealias, dtype, library):
    """Tests that fast real Fourier transforms match matrix transforms."""
    c = coords.Coordinate('x')
    d = distributor.Distributor([c])
    # Matrix
    b_mat = basis.RealFourier(c,
                              size=N,
                              bounds=(0, 2 * np.pi),
                              dealias=dealias,
                              library='matrix')
    u_mat = field.Field(dist=d, bases=(b_mat, ), dtype=dtype)
    u_mat.preset_scales(dealias)
    u_mat['g'] = np.random.randn(int(np.ceil(dealias * N)))
    # Library
    b_lib = basis.RealFourier(c,
                              size=N,
                              bounds=(0, 2 * np.pi),
                              dealias=dealias,
                              library=library)
    u_lib = field.Field(dist=d, bases=(b_lib, ), dtype=dtype)
    u_lib.preset_scales(dealias)
    u_lib['g'] = u_mat['g']
    assert np.allclose(u_mat['c'], u_lib['c'])
Exemplo n.º 7
0
def test_fourier_interpolate(N, bounds, dtype):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c, ))
    if dtype == np.float64:
        b = basis.RealFourier(c, size=N, bounds=bounds)
    elif dtype == np.complex128:
        b = basis.ComplexFourier(c, size=N, bounds=bounds)
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b, ), dtype=dtype)
    k = 4 * np.pi / (bounds[1] - bounds[0])
    f['g'] = 1 + np.sin(k * x + 0.1)
    results = []
    for p in [
            bounds[0], bounds[1],
            bounds[0] + (bounds[1] - bounds[0]) * np.random.rand()
    ]:
        fp = operators.Interpolate(f, c, p).evaluate()
        results.append(np.allclose(fp['g'], 1 + np.sin(k * p + 0.1)))
    assert all(results)
Exemplo n.º 8
0
from mpi4py import MPI
rank = MPI.COMM_WORLD.rank
import logging
logger = logging.getLogger(__name__)
dtype = np.complex128 #np.float64

Nx = 64
Nz = 32
Lz = 2*np.pi
# Bases
c = coords.CartesianCoordinates('x', 'z')
d = distributor.Distributor((c,))
if dtype == np.complex128:
    xb = basis.ComplexFourier(c.coords[0], size=Nx, bounds=(0, 2*np.pi), dealias=3/2)
elif dtype == np.float64:
    xb = basis.RealFourier(c.coords[0], size=Nx, bounds=(0, 2*np.pi), dealias=3/2)
zb = basis.ChebyshevT(c.coords[1], size=Nz, bounds=(0, Lz),dealias=3/2)
x = xb.local_grid(1)
z = zb.local_grid(1)
zb1 = basis.ChebyshevU(c.coords[1], size=Nz, bounds=(0, Lz), alpha0=0)
t1 = field.Field(name='t1', dist=d, bases=(xb,), dtype=dtype)
t2 = field.Field(name='t2', dist=d, bases=(xb,), dtype=dtype)
P1 = field.Field(name='P1', dist=d, bases=(zb1,), dtype=dtype)
if rank == 0:
    P1['c'][0,-1] = 1
dz = lambda A: operators.Differentiate(A, c.coords[1])
P2 = dz(P1).evaluate()

# Fields
u = field.Field(name='u', dist=d, bases=(xb,zb), dtype=dtype)
F = field.Field(name='F', dist=d, bases=(xb,zb), dtype=dtype)
Exemplo n.º 9
0
radius = 1
Mmax = 31
Nmax = 31
nz = 32
Ampl = 1e-6
Re = 3162.
nu = 1./Re
zmin = 0
zmax = 16*np.pi*2*radius

# Bases
zc = coords.Coordinate('z')
c = coords.PolarCoordinates('phi', 'r')
d = distributor.Distributor((zc,c))
b = basis.DiskBasis(c, (Mmax+1, Nmax+1), radius=radius, dtype=dtype)
zb = basis.RealFourier(zc, nz, bounds=(zmin, zmax))
cb = b.S1_basis(radius=radius)

phi, r = b.local_grids((1, 1))
z = zb.local_grids((1,))

# Fields
u = field.Field(dist=d, bases=(zb, b), tensorsig=(c,),dtype=dtype)
w = field.Field(dist=d, bases=(zb, b), dtype=dtype)
p = field.Field(dist=d, bases=(zb, b), dtype=dtype)
tau_u = field.Field(dist=d, bases=(cb,), tensorsig=(c,), dtype=dtype)
tau_w = field.Field(dist=d, bases=(cb,), dtype=dtype)

# Parameters and operators
lap = lambda A: operators.Laplacian(A, c)
div = lambda A: operators.Divergence(A)
Exemplo n.º 10
0
# Parameters
Lx, Lz = (4, 1)
Nx, Nz = 64, 32
Prandtl = 1
Rayleigh = 1e6
timestep = 0.05
stop_iteration = 150
dtype = np.complex128
print_condition_numbers = True
plot_subproblem_matrices = False

# Bases
c = coords.CartesianCoordinates('x', 'z')
d = distributor.Distributor((c, ))
if dtype == np.float64:
    xb = basis.RealFourier(c.coords[0], size=Nx, bounds=(0, Lx))
elif dtype == np.complex128:
    xb = basis.ComplexFourier(c.coords[0], size=Nx, bounds=(0, Lx))
zb = basis.ChebyshevT(c.coords[1], size=Nz, bounds=(0, Lz))
x = xb.local_grid(1)
z = zb.local_grid(1)

# Fields
p = field.Field(name='p', dist=d, bases=(xb, zb), dtype=dtype)
b = field.Field(name='b', dist=d, bases=(xb, zb), dtype=dtype)
u = field.Field(name='u', dist=d, bases=(xb, zb), dtype=dtype, tensorsig=(c, ))

# Taus
zb1 = basis.ChebyshevU(c.coords[1], size=Nz, bounds=(0, Lz), alpha0=0)
t1 = field.Field(name='t1', dist=d, bases=(xb, ), dtype=dtype)
t2 = field.Field(name='t2', dist=d, bases=(xb, ), dtype=dtype)