Exemplo n.º 1
0
    def fit(self,
            dataset,
            nb_epoch=10,
            batch_size=50,
            pad_batches=False,
            **kwargs):
        """
    Fits a model on data in a Dataset object.
    """
        # TODO(rbharath/enf): We need a structured way to deal with potential GPU
        #                     memory overflows.
        for epoch in range(nb_epoch):
            log("Starting epoch %s" % str(epoch + 1), self.verbosity)
            losses = []
            for (X_batch, y_batch, w_batch,
                 ids_batch) in dataset.iterbatches(batch_size,
                                                   pad_batches=pad_batches):
                if self.fit_transformers:
                    X_batch, y_batch, w_batch = self.transform_on_batch(
                        X_batch, y_batch, w_batch)
                if pad_batches:
                    X_batch, y_batch, w_batch, ids_batch = pad_batch(
                        batch_size, X_batch, y_batch, w_batch, ids_batch)

                losses.append(self.fit_on_batch(X_batch, y_batch, w_batch))
            log(
                "Avg loss for epoch %d: %f" %
                (epoch + 1, np.array(losses).mean()), self.verbosity)
Exemplo n.º 2
0
 def predict_proba_on_batch(self, support, test_batch):
     """Make predictions on batch of data."""
     n_samples = len(test_batch)
     X, y, w, ids = pad_batch(self.test_size, test_batch.X, test_batch.y,
                              test_batch.w, test_batch.ids)
     padded_test_batch = NumpyDataset(X, y, w, ids)
     feed_dict = self.construct_feed_dict(padded_test_batch, support)
     # Get scores
     pred = self.sess.run(self.pred_op, feed_dict=feed_dict)
     # Remove padded elements
     pred = np.asarray(pred[:n_samples])
     return pred
Exemplo n.º 3
0
 def predict_on_batch(self, support, test_batch):
   """Make predictions on batch of data."""
   n_samples = len(test_batch)
   padded_test_batch = NumpyDataset(*pad_batch(
       self.test_batch_size, test_batch.X, test_batch.y, test_batch.w,
       test_batch.ids))
   feed_dict = self.construct_feed_dict(padded_test_batch, support)
   # Get scores
   pred, scores = self.sess.run([self.pred_op, self.scores_op], feed_dict=feed_dict)
   y_pred_batch = np.round(pred)
   # Remove padded elements
   y_pred_batch = y_pred_batch[:n_samples]
   return y_pred_batch
Exemplo n.º 4
0
 def predict_on_batch(self, support, test_batch):
     """Make predictions on batch of data."""
     n_samples = len(test_batch)
     X, y, w, ids = pad_batch(self.test_batch_size, test_batch.X,
                              test_batch.y, test_batch.w, test_batch.ids)
     padded_test_batch = NumpyDataset(X, y, w, ids)
     feed_dict = self.construct_feed_dict(padded_test_batch, support)
     # Get scores
     pred, scores = self.sess.run([self.pred_op, self.scores_op],
                                  feed_dict=feed_dict)
     y_pred_batch = np.round(pred)
     # Remove padded elements
     y_pred_batch = y_pred_batch[:n_samples]
     return y_pred_batch
Exemplo n.º 5
0
 def predict_proba_on_batch(self, support, test_batch):
   """Make predictions on batch of data."""
   n_samples = len(test_batch)
   padded_test_batch = NumpyDataset(*pad_batch(
       self.test_batch_size, test_batch.X, test_batch.y, test_batch.w,
       test_batch.ids))
   feed_dict = self.construct_feed_dict(padded_test_batch, support)
   # Get scores
   pred, scores = self.sess.run([self.pred_op, self.scores_op], feed_dict=feed_dict)
   # pred corresponds to prob(example == 1) 
   y_pred_batch = np.zeros((n_samples, 2))
   # Remove padded elements
   pred = pred[:n_samples]
   y_pred_batch[:, 1] = pred
   y_pred_batch[:, 0] = 1-pred
   return y_pred_batch
Exemplo n.º 6
0
 def predict_proba_on_batch(self, support, test_batch):
     """Make predictions on batch of data."""
     n_samples = len(test_batch)
     X, y, w, ids = pad_batch(self.test_batch_size, test_batch.X,
                              test_batch.y, test_batch.w, test_batch.ids)
     padded_test_batch = NumpyDataset(X, y, w, ids)
     feed_dict = self.construct_feed_dict(padded_test_batch, support)
     # Get scores
     pred, scores = self.sess.run([self.pred_op, self.scores_op],
                                  feed_dict=feed_dict)
     # pred corresponds to prob(example == 1)
     y_pred_batch = np.zeros((n_samples, 2))
     # Remove padded elements
     pred = pred[:n_samples]
     y_pred_batch[:, 1] = pred
     y_pred_batch[:, 0] = 1 - pred
     return y_pred_batch
Exemplo n.º 7
0
 def fit(self, dataset, nb_epoch=10, batch_size=50, pad_batches=False, **kwargs):
   """
   Fits a model on data in a Dataset object.
   """
   # TODO(rbharath/enf): We need a structured way to deal with potential GPU
   #                     memory overflows.
   for epoch in range(nb_epoch):
     log("Starting epoch %s" % str(epoch+1), self.verbosity)
     losses = []
     for (X_batch, y_batch, w_batch, ids_batch) in dataset.iterbatches(
         batch_size, pad_batches=pad_batches):
       if self.fit_transformers:
         X_batch, y_batch, w_batch = self.transform_on_batch(X_batch, y_batch,
                                           w_batch)
       if pad_batches:
         X_batch, y_batch, w_batch, ids_batch = pad_batch(
             batch_size, X_batch, y_batch, w_batch, ids_batch)
       
       losses.append(self.fit_on_batch(X_batch, y_batch, w_batch))
     log("Avg loss for epoch %d: %f"
         % (epoch+1,np.array(losses).mean()),self.verbosity)