Exemplo n.º 1
0
def test_attentivefp_classification():
  # load datasets
  featurizer = MolGraphConvFeaturizer(use_edges=True)
  tasks, dataset, transformers, metric = get_dataset(
      'classification', featurizer=featurizer)

  # initialize models
  n_tasks = len(tasks)
  model = AttentiveFPModel(
      mode='classification',
      n_tasks=n_tasks,
      batch_size=10,
      learning_rate=0.001)

  # overfit test
  model.fit(dataset, nb_epoch=100)
  scores = model.evaluate(dataset, [metric], transformers)
  assert scores['mean-roc_auc_score'] >= 0.85

  # test on a small MoleculeNet dataset
  from deepchem.molnet import load_bace_classification

  tasks, all_dataset, transformers = load_bace_classification(
      featurizer=featurizer)
  train_set, _, _ = all_dataset
  model = AttentiveFPModel(
      mode='classification',
      n_tasks=len(tasks),
      num_layers=1,
      num_timesteps=1,
      graph_feat_size=2)
  model.fit(train_set, nb_epoch=1)
Exemplo n.º 2
0
def test_attentivefp_regression():
  # load datasets
  featurizer = MolGraphConvFeaturizer(use_edges=True)
  tasks, dataset, transformers, metric = get_dataset(
      'regression', featurizer=featurizer)

  # initialize models
  n_tasks = len(tasks)
  model = AttentiveFPModel(mode='regression', n_tasks=n_tasks, batch_size=10)

  # overfit test
  model.fit(dataset, nb_epoch=100)
  scores = model.evaluate(dataset, [metric], transformers)
  assert scores['mean_absolute_error'] < 0.5

  # test on a small MoleculeNet dataset
  from deepchem.molnet import load_delaney

  tasks, all_dataset, transformers = load_delaney(featurizer=featurizer)
  train_set, _, _ = all_dataset
  model = AttentiveFPModel(
      mode='regression',
      n_tasks=len(tasks),
      num_layers=1,
      num_timesteps=1,
      graph_feat_size=2)
  model.fit(train_set, nb_epoch=1)
Exemplo n.º 3
0
def test_attentivefp_regression():
    # load datasets
    featurizer = MolGraphConvFeaturizer(use_edges=True)
    tasks, dataset, transformers, metric = get_dataset('regression',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = AttentiveFPModel(mode='regression', n_tasks=n_tasks, batch_size=10)

    # overfit test
    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean_absolute_error'] < 0.5
Exemplo n.º 4
0
def test_attentivefp_classification():
    # load datasets
    featurizer = MolGraphConvFeaturizer(use_edges=True)
    tasks, dataset, transformers, metric = get_dataset('classification',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = AttentiveFPModel(mode='classification',
                             n_tasks=n_tasks,
                             batch_size=10,
                             learning_rate=0.001)

    # overfit test
    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean-roc_auc_score'] >= 0.85
Exemplo n.º 5
0
def test_attentivefp_reload():
    # load datasets
    featurizer = MolGraphConvFeaturizer(use_edges=True)
    tasks, dataset, transformers, metric = get_dataset('classification',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model_dir = tempfile.mkdtemp()
    model = AttentiveFPModel(mode='classification',
                             n_tasks=n_tasks,
                             model_dir=model_dir,
                             batch_size=10,
                             learning_rate=0.001)

    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean-roc_auc_score'] >= 0.85

    reloaded_model = AttentiveFPModel(mode='classification',
                                      n_tasks=n_tasks,
                                      model_dir=model_dir,
                                      batch_size=10,
                                      learning_rate=0.001)
    reloaded_model.restore()

    pred_mols = ["CCCC", "CCCCCO", "CCCCC"]
    X_pred = featurizer(pred_mols)
    random_dataset = dc.data.NumpyDataset(X_pred)
    original_pred = model.predict(random_dataset)
    reload_pred = reloaded_model.predict(random_dataset)
    assert np.all(original_pred == reload_pred)