Exemplo n.º 1
0
    def predict_image(self, image_path, return_plot=True, show=False):
        '''Predict tree crowns based on loaded (or trained) model
        
        Args:
            image_path (str): Path to image on disk
            show (bool): Plot the predicted image with bounding boxes. Ignored if return_plot=False
            return_plot: Whether to return image with annotations overlaid, or just a numpy array of boxes
        Returns:
            predictions (array): if return_plot, an image. Otherwise a numpy array of predicted bounding boxes
        '''
        #Check for model weights

        if (self.weights is None):
            raise ValueError(
                "Model currently has no weights, either train a new model using deepforest.train, loading existing model, or use prebuilt model (see deepforest.use_release()"
            )

        #convert model to prediction
        self.prediction_model = convert_model(self.model)

        if return_plot:
            image = predict.predict_image(self.prediction_model,
                                          image_path,
                                          return_plot=return_plot)
            #cv2 channel order
            if show:
                plt.imshow(image[:, :, ::-1])
                plt.show()
            return image
        else:
            boxes = predict.predict_image(self.prediction_model,
                                          image_path,
                                          return_plot=return_plot)
            return boxes
Exemplo n.º 2
0
    def predict_image(self,
                      image=None,
                      path=None,
                      return_plot=False,
                      color=None,
                      thickness=1):
        """Predict a single image with a deepforest model
                
        Args:
            image: a float32 numpy array of a RGB with channels last format
            path: optional path to read image from disk instead of passing image arg
            return_plot: Return image with plotted detections
            color: color of the bounding box as a tuple of BGR color, e.g. orange annotations is (0, 165, 255)
            thickness: thickness of the rectangle border line in px
        Returns:
            boxes: A pandas dataframe of predictions (Default)
            img: The input with predictions overlaid (Optional)
        """
        if isinstance(image, str):
            raise ValueError(
                "Path provided instead of image. If you want to predict an image from disk, is path ="
            )

        if path:
            if not isinstance(path, str):
                raise ValueError("Path expects a string path to image on disk")
            image = np.array(Image.open(path).convert("RGB")).astype("float32")

        #sanity checks on input images
        if not type(image) == np.ndarray:
            raise TypeError(
                "Input image is of type {}, expected numpy, if reading from PIL, wrap in np.array(image).astype(float32)"
                .format(type(image)))

            # Load on GPU is available
        if self.current_device.type == "cuda":
            self.model = self.model.to("cuda")

        self.model.eval()
        self.model.score_thresh = self.config["score_thresh"]

        # Check if GPU is available and pass image to gpu
        result = predict.predict_image(model=self.model,
                                       image=image,
                                       return_plot=return_plot,
                                       device=self.current_device,
                                       iou_threshold=self.config["nms_thresh"],
                                       color=color,
                                       thickness=thickness)

        #Set labels to character from numeric if returning boxes df
        if not return_plot:
            if not result is None:
                result["label"] = result.label.apply(
                    lambda x: self.numeric_to_label_dict[x])

        return result
Exemplo n.º 3
0
    def predict_image(self,
                      image_path=None,
                      numpy_image=None,
                      return_plot=True,
                      score_threshold=0.05,
                      show=False,
                      color=None):
        """Predict tree crowns based on loaded (or trained) model
        
        Args:
            image_path (str): Path to image on disk
            numpy_image (array): Numpy image array in BGR channel order following openCV convention
            color (tuple): Color of bounding boxes in BGR order (0,0,0) black default 
            show (bool): Plot the predicted image with bounding boxes. Ignored if return_plot=False
            return_plot: Whether to return image with annotations overlaid, or just a numpy array of boxes
        
        Returns:
            predictions (array): if return_plot, an image. Otherwise a numpy array of predicted bounding boxes, with scores and labels
        """

        #Check for model save
        if (self.prediction_model is None):
            raise ValueError(
                "Model currently has no prediction weights, either train a new model using deepforest.train, loading existing model, or use prebuilt model (see deepforest.use_release()"
            )

        #Check the formatting
        if isinstance(image_path, np.ndarray):
            raise ValueError(
                "image_path should be a string, but is a numpy array. If predicting a loaded image (channel order BGR), use numpy_image argument."
            )

        #Check for correct formatting
        #Warning if image is very large and using the release model
        if numpy_image is None:
            numpy_image = cv2.imread(image_path)

        #Predict
        prediction = predict.predict_image(self.prediction_model,
                                           image_path=image_path,
                                           raw_image=numpy_image,
                                           return_plot=return_plot,
                                           score_threshold=score_threshold,
                                           color=color,
                                           classes=self.labels)

        #cv2 channel order to matplotlib order
        if return_plot & show:
            plt.imshow(prediction[:, :, ::-1])
            plt.show()

        return prediction
Exemplo n.º 4
0
    def predict_image(self, image=None, path=None, return_plot=False):
        """Predict an image with a deepforest model

        Args:
            image: a numpy array of a RGB image ranged from 0-255
            path: optional path to read image from disk instead of passing image arg
            return_plot: Return image with plotted detections
        Returns:
            boxes: A pandas dataframe of predictions (Default)
            img: The input with predictions overlaid (Optional)
        """
        if isinstance(image, str):
            raise ValueError(
                "Path provided instead of image. If you want to predict an image from disk, is path ="
            )

        if path:
            if not isinstance(path, str):
                raise ValueError("Path expects a string path to image on disk")
            image = io.imread(path)

            # Load on GPU is available
        if torch.cuda.is_available:
            self.model.to(self.device)

        self.model.eval()

        # Check if GPU is available and pass image to gpu
        result = predict.predict_image(model=self.model,
                                       image=image,
                                       return_plot=return_plot,
                                       device=self.device,
                                       iou_threshold=self.config["nms_thresh"])

        #Set labels to character from numeric if returning boxes df
        if not return_plot:
            if not result is None:
                result["label"] = result.label.apply(
                    lambda x: self.numeric_to_label_dict[x])

        return result