Exemplo n.º 1
0
    def __init__(self, project_name="deeplodocus_project", main_path: Optional[str] = None, force_overwrite: bool = False):
        """
        AUTHORS:
        --------

        :author: Alix Leroy
        :author: Samuel Westlake

        DESCRIPTION:
        ------------

        Initialize a instance ready to create a new Deeplodocus project

        PARAMETERS:
        -----------

        :param project_name(str, optional): The name of the project
        :param main_path(str, optional): The path of the working directory
        :param force_overwrite(bool, optional): Whether we want to overwrite an existing project or not

        RETURN:
        -------

        None
        """
        self.project_name = project_name
        self.force_overwrite = force_overwrite

        if main_path is None:
            self.main_path = get_main_path()
        else:
            self.main_path = main_path
Exemplo n.º 2
0
    def __add_log(message: str) -> None:
        """
        AUTHORS:
        --------

        :author: Alix Leroy
        :author: Samuel Westlake

        DESCRIPTION:
        ------------

        Add a message to the logs.

        PARAMETERS:
        -----------

        :param message (str): The message to save in the logs.

        RETURN:
        -------

        :return: None

        """
        Logs(log_type=DEEP_LOG_NOTIFICATION,
             directory=get_main_path(),
             extension=DEEP_EXT_LOGS).add(message)
Exemplo n.º 3
0
import deeplodocus.app.metrics as deep_metrics
import deeplodocus.data.load as deep_sources

import torchvision.datasets as tv_data

DEEP_MODULE_OPTIMIZERS = {
    "pytorch": {
        "path": torch.optim.__path__,
        "prefix": torch.optim.__name__
    },
    "deeplodocus": {
        "path": deep_optim.__path__,
        "prefix": deep_optim.__name__
    },
    "custom": {
        "path": [get_main_path() + "/modules/optimizers"],
        "prefix": "modules.optimizers"
    }
}

DEEP_MODULE_SOURCES = {
    "deeplodocus": {
        "path": deep_sources.__path__,
        "prefix": deep_sources.__name__
    },
    "custom": {
        "path": ["%s/modules/sources" % get_main_path()],
        "prefix": "modules.sources"
    }
}
Exemplo n.º 4
0
from deeplodocus.flags.ext import DEEP_EXT_CSV, DEEP_EXT_LOGS
from deeplodocus.utils import get_main_path

DEEP_LOG_NOTIFICATION = "notification"
DEEP_LOG_HISTORY_TRAIN_BATCHES = "history_train_batches"
DEEP_LOG_HISTORY_TRAIN_EPOCHS = "history_train_epochs"
DEEP_LOG_HISTORY_VALIDATION = "history_validation"

DEEP_LOGS = {
    DEEP_LOG_NOTIFICATION: [get_main_path(), DEEP_EXT_LOGS],
    DEEP_LOG_HISTORY_TRAIN_BATCHES: [get_main_path(), DEEP_EXT_CSV],
    DEEP_LOG_HISTORY_TRAIN_EPOCHS: [get_main_path(), DEEP_EXT_CSV],
    DEEP_LOG_HISTORY_VALIDATION: [get_main_path(), DEEP_EXT_CSV]
}

DEEP_LOG_RESULT_DIRECTORIES = ["logs", "weights", "history"]
Exemplo n.º 5
0
from deeplodocus.utils import get_main_path

DEEP_PATH_NOTIFICATION = r"%s/logs" % get_main_path()
DEEP_PATH_HISTORY = r"%s/results/history" % get_main_path()
DEEP_PATH_SAVE_MODEL = r"%s/results/models" % get_main_path()
Exemplo n.º 6
0
from deeplodocus.utils import get_main_path
from deeplodocus.utils.flag import Flag
#
# ENTRIES
#

DEEP_ENTRY_INPUT = 0
DEEP_ENTRY_LABEL = 1
DEEP_ENTRY_OUTPUT = 2
DEEP_ENTRY_ADDITIONAL_DATA = 3

DEEP_ENTRY_INPUT = Flag(name="Input",
                        description="Input entry",
                        names=["input", "inputs", "inp", "x"])
DEEP_ENTRY_LABEL = Flag(name="Label",
                        description="Label entry",
                        names=[
                            "label", "labels", "lab", "expected output",
                            "expected_output", "y_expected", "y_hat"
                        ])
DEEP_ENTRY_OUTPUT = Flag(name="Output",
                         description="Output entry",
                         names=["output", "outputs", "y"])
DEEP_ENTRY_ADDITIONAL_DATA = Flag(name="Additional data",
                                  description="Additional Data entry",
                                  names=["additional_data", "additional data"])

DEEP_ENTRY_BASE_FILE_NAME = get_main_path(
) + "/data/auto-generated_dataset_%s_entry_%s_%i_source_%i.dat"
Exemplo n.º 7
0
import torch
import torch.nn.functional

from deeplodocus.utils import get_main_path
import deeplodocus.data.transforms as tfm

DEEP_MODULE_OPTIMIZERS = {
    "pytorch": {
        "path": torch.optim.__path__,
        "prefix": torch.optim.__name__
    },
    "custom": {
        "path": [get_main_path() + "/modules/optimizers"],
        "prefix": "modules.optimizers"
    }
}

DEEP_MODULE_MODELS = {
    "custom": {
        "path": [get_main_path() + "/modules/models"],
        "prefix": "modules.models"
    }
}

DEEP_MODULE_LOSSES = {
    "pytorch": {
        "path": torch.nn.__path__,
        "prefix": torch.nn.__name__
    },
    "custom": {
        "path": [get_main_path() + "/modules/losses"],
Exemplo n.º 8
0
#

DEEP_ENTRY_INPUT = 0
DEEP_ENTRY_LABEL = 1
DEEP_ENTRY_OUTPUT = 2
DEEP_ENTRY_ADDITIONAL_DATA = 3


DEEP_ENTRY_INPUT = Flag(
    name="Input",
    description="Input entry",
    names=["input", "inputs", "inp", "x"]
)
DEEP_ENTRY_LABEL = Flag(
    name="Label",
    description="Label entry",
    names=["label", "labels", "lab", "expected output", "expected_output", "y_expected", "y_hat"]
)
DEEP_ENTRY_OUTPUT = Flag(
    name="Output",
    description="Output entry",
    names=["output", "outputs", "y"]
)
DEEP_ENTRY_ADDITIONAL_DATA = Flag(
    name="Additional data",
    description="Additional Data entry",
    names=["additional_data", "additional data"]
)

DEEP_ENTRY_BASE_FILE_NAME = get_main_path() + "/data/auto-generated_dataset_source_folder_%i.dat"