Exemplo n.º 1
0
def train (args) :
    # load json database
    with open (args.INPUT, 'r') as fp:
       jdata = json.load (fp)
    if not 'model' in jdata.keys():
       jdata = convert_input_v0_v1(jdata, 
                                   warning = True, 
                                   dump = 'input_v1_compat.json')
    # run options
    with_distrib = False 
    if 'with_distrib' in jdata:
        with_distrib = jdata['with_distrib']
    run_opt = RunOptions(args, with_distrib)
    run_opt.print_welcome()
    run_opt.print_citation()
    run_opt.print_summary()

    if run_opt.is_distrib :
        # distributed training
        if run_opt.my_job_name == "ps":
            queue = create_done_queue(run_opt.cluster_spec, run_opt.my_task_index)
            wait_done_queue(run_opt.cluster_spec, run_opt.server, queue, run_opt.my_task_index)
            #server.join()
        elif run_opt.my_job_name == "worker":
            done_ops = connect_done_queue(run_opt.cluster_spec, run_opt.my_task_index)
            _do_work(jdata, run_opt)
            fill_done_queue(run_opt.cluster_spec, run_opt.server, done_ops, run_opt.my_task_index)
        else :
            raise RuntimeError("unknown job name")
    else :
        # serial training
        _do_work(jdata, run_opt)
Exemplo n.º 2
0
    def __init__(self):
        # setup
        with open(os.path.join(os.path.dirname(__file__),
                               'water_se_a.json')) as fp:
            jdata = json.load(fp)
        self.run_opt = RunOptions(None)
        self.run_opt.verbose = False
        self.model = NNPTrainer(jdata, run_opt=self.run_opt)
        rcut = self.model.model.get_rcut()
        type_map = self.model.model.get_type_map()
        systems = [os.path.join(os.path.dirname(__file__), 'data')]
        set_pfx = jdata['training']['set_prefix']
        seed = jdata['training']['seed']

        np.random.seed(seed)
        batch_size = jdata['training']['batch_size']
        test_size = jdata['training']['numb_test']
        self.data = DeepmdDataSystem(systems,
                                     batch_size,
                                     test_size,
                                     rcut,
                                     set_prefix=set_pfx,
                                     run_opt=self.run_opt,
                                     type_map=type_map)
        self.data.add_dict(data_requirement)
        self.model.build(self.data)
        self.model._init_sess_serial()

        cur_batch = self.model.sess.run(self.model.global_step)
        self.cur_batch = cur_batch
Exemplo n.º 3
0
def compute_efv(jfile):
    fp = open(jfile, 'r')
    jdata = json.load(fp)
    run_opt = RunOptions(None)
    systems = j_must_have(jdata, 'systems')
    set_pfx = j_must_have(jdata, 'set_prefix')
    batch_size = j_must_have(jdata, 'batch_size')
    test_size = j_must_have(jdata, 'numb_test')
    batch_size = 1
    test_size = 1
    rcut = j_must_have(jdata, 'rcut')

    data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt)

    tot_numb_batches = sum(data.get_nbatches())
    lr = LearingRate(jdata, tot_numb_batches)

    model = NNPModel(jdata, run_opt=run_opt)
    model.build(data, lr)

    test_data = data.get_test()

    feed_dict_test = {
        model.t_prop_c:
        test_data["prop_c"],
        model.t_energy:
        test_data["energy"][:model.numb_test],
        model.t_force:
        np.reshape(test_data["force"][:model.numb_test, :], [-1]),
        model.t_virial:
        np.reshape(test_data["virial"][:model.numb_test, :], [-1]),
        model.t_atom_ener:
        np.reshape(test_data["atom_ener"][:model.numb_test, :], [-1]),
        model.t_atom_pref:
        np.reshape(test_data["atom_pref"][:model.numb_test, :], [-1]),
        model.t_coord:
        np.reshape(test_data["coord"][:model.numb_test, :], [-1]),
        model.t_box:
        test_data["box"][:model.numb_test, :],
        model.t_type:
        np.reshape(test_data["type"][:model.numb_test, :], [-1]),
        model.t_natoms:
        test_data["natoms_vec"],
        model.t_mesh:
        test_data["default_mesh"],
        model.t_fparam:
        np.reshape(test_data["fparam"][:model.numb_test, :], [-1]),
        model.is_training:
        False
    }

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    [e, f, v] = sess.run([model.energy, model.force, model.virial],
                         feed_dict=feed_dict_test)
    return e, f, v
Exemplo n.º 4
0
    def _setUp(self):
        args = Args()
        run_opt = RunOptions(args, False)
        with open (args.INPUT, 'r') as fp:
           jdata = json.load (fp)

        # init model
        model = NNPTrainer (jdata, run_opt = run_opt)
        rcut = model.model.get_rcut()

        # init data system
        systems = j_must_have(jdata['training'], 'systems')
        set_pfx = j_must_have(jdata['training'], 'set_prefix')
        batch_size = j_must_have(jdata['training'], 'batch_size')
        test_size = j_must_have(jdata['training'], 'numb_test')    
        data = DeepmdDataSystem(systems, 
                                batch_size, 
                                test_size, 
                                rcut, 
                                set_prefix=set_pfx)
        data.add_dict(data_requirement)

        # clear the default graph
        tf.reset_default_graph()

        # build the model with stats from the first system
        model.build (data)
        
        # freeze the graph
        with tf.Session() as sess:
            init_op = tf.global_variables_initializer()
            sess.run(init_op)
            graph = tf.get_default_graph()
            input_graph_def = graph.as_graph_def()
            nodes = "o_dipole,o_rmat,o_rmat_deriv,o_nlist,o_rij,descrpt_attr/rcut,descrpt_attr/ntypes,descrpt_attr/sel,descrpt_attr/ndescrpt,model_attr/tmap,model_attr/sel_type,model_attr/model_type"
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess,
                input_graph_def,
                nodes.split(",") 
            )
            output_graph = os.path.join(modifier_datapath, 'dipole.pb')
            with tf.gfile.GFile(output_graph, "wb") as f:
                f.write(output_graph_def.SerializeToString())
Exemplo n.º 5
0
    def __init__(self, 
                 sess, 
                 jdata, 
                 run_opt = RunOptions()):
        self.run_opt = run_opt
        self.sess = sess
        # descrpt config
        self.use_smooth = False
        if j_have (jdata, "use_smooth") :
            self.use_smooth = jdata["use_smooth"]
        self.sel_a = j_must_have (jdata, 'sel_a')
        self.sel_r = [ 0 for ii in range(len(self.sel_a)) ]
        if not self.use_smooth :
            self.sel_r = j_must_have (jdata, 'sel_r')
        else :
            if j_have (jdata, 'sel_r') :
                self.warning ('ignoring key sel_r in the json database and set sel_r to %s' % 
                              str(self.sel_r))
        self.rcut_a = -1
        self.rcut_r = j_must_have (jdata, 'rcut')
        if j_have(jdata, 'rcut_smth') :
            self.rcut_r_smth = jdata['rcut_smth']
        else :
            self.rcut_r_smth = self.rcut_r
        # axis
        self.axis_rule = []
        if j_have (jdata, 'axis_rule') :
            self.axis_rule = jdata['axis_rule']
        # filter of smooth version
        if self.use_smooth :
            self.filter_neuron = j_must_have (jdata, 'filter_neuron')
            self.n_axis_neuron = j_must_have (jdata, 'n_axis_neuron')
            self.filter_resnet_dt = False
            if j_have(jdata, 'filter_resnet_dt') :
                self.filter_resnet_dt = jdata['filter_resnet_dt']        
        # numb of neighbors and numb of descrptors
        self.nnei_a = np.cumsum(self.sel_a)[-1]
        self.nnei_r = np.cumsum(self.sel_r)[-1]
        self.nnei = self.nnei_a + self.nnei_r
        self.ndescrpt_a = self.nnei_a * 4
        self.ndescrpt_r = self.nnei_r * 1
        self.ndescrpt = self.ndescrpt_a + self.ndescrpt_r
        # network size
        self.n_neuron = j_must_have (jdata, 'n_neuron')
        self.resnet_dt = True
        if j_have(jdata, 'resnet_dt') :
            self.resnet_dt = jdata['resnet_dt']

        self.numb_test = j_must_have (jdata, 'numb_test')
        self.useBN = False

        self.start_pref_e = j_must_have (jdata, 'start_pref_e')
        self.limit_pref_e = j_must_have (jdata, 'limit_pref_e')
        self.start_pref_f = j_must_have (jdata, 'start_pref_f')
        self.limit_pref_f = j_must_have (jdata, 'limit_pref_f')
        self.start_pref_v = j_must_have (jdata, 'start_pref_v')
        self.limit_pref_v = j_must_have (jdata, 'limit_pref_v')
        self.has_e = (self.start_pref_e != 0 or self.limit_pref_e != 0)
        self.has_f = (self.start_pref_f != 0 or self.limit_pref_f != 0)
        self.has_v = (self.start_pref_v != 0 or self.limit_pref_v != 0)

        self.disp_file = "lcurve.out"
        if j_have (jdata, "disp_file") : self.disp_file = jdata["disp_file"]
        self.disp_freq = j_must_have (jdata, 'disp_freq')
        self.save_freq = j_must_have (jdata, 'save_freq')
        self.save_ckpt = j_must_have (jdata, 'save_ckpt')

        self.seed = None
        if j_have (jdata, 'seed') :
            self.seed = jdata['seed']

        self.display_in_training = j_must_have (jdata, 'disp_training')
        self.timing_in_training = j_must_have (jdata, 'time_training')
        self.profiling = False
        if j_have (jdata, 'profiling') :
            self.profiling = jdata['profiling']
            if self.profiling :
                self.profiling_file = j_must_have (jdata, 'profiling_file')

        self.null_mesh = tf.constant ([-1])

        self.verbose = True
Exemplo n.º 6
0
def _main () :
    default_num_inter_threads = 0
    parser = argparse.ArgumentParser(
        description="*** Train a model. ***")
    parser.add_argument('INPUT', 
                        help='the input json database ')
    parser.add_argument('-t','--inter-threads', type = int, default = default_num_inter_threads,
                        help=
                        'With default value %d. ' % default_num_inter_threads + 
                        'Setting the "inter_op_parallelism_threads" key for the tensorflow, '  +
                        'the "intra_op_parallelism_threads" will be set by the env variable OMP_NUM_THREADS')
    parser.add_argument('--init-model', type = str, 
                        help=
                        'Initialize the model by the provided checkpoint.')
    parser.add_argument('--restart', type = str, 
                        help=
                        'Restart the training from the provided checkpoint.')
    args = parser.parse_args()

    # load json database
    fp = open (args.INPUT, 'r')
    jdata = json.load (fp)

    # init params and run options
    systems = j_must_have(jdata, 'systems')
    set_pfx = j_must_have(jdata, 'set_prefix')
    numb_sys = len(systems)
    seed = None
    if 'seed' in jdata.keys() : seed = jdata['seed']
    batch_size = j_must_have(jdata, 'batch_size')
    test_size = j_must_have(jdata, 'numb_test')
    stop_batch = j_must_have(jdata, 'stop_batch')
    rcut = j_must_have (jdata, 'rcut')
    print ("#")
    print ("# find %d system(s): " % numb_sys)    
    data = DataSystem(systems, set_pfx, batch_size, test_size, rcut)
    print ("#")
    tot_numb_batches = sum(data.get_nbatches())
    lr = LearingRate (jdata, tot_numb_batches)
    final_lr = lr.value (stop_batch)
    run_opt = RunOptions(args)
    print("# run with intra_op_parallelism_threads = %d, inter_op_parallelism_threads = %d " % 
          (run_opt.num_intra_threads, run_opt.num_inter_threads))

    # start tf
    tf.reset_default_graph()
    with tf.Session(
            config=tf.ConfigProto(intra_op_parallelism_threads=run_opt.num_intra_threads, 
                                  inter_op_parallelism_threads=run_opt.num_inter_threads
            )) as sess:
        # init the model
        model = NNPModel (sess, jdata, run_opt = run_opt)
        # build the model with stats from the first system
        model.build (data, lr)
        # train the model with the provided systems in a cyclic way
        start_time = time.time()
        cur_batch = model.get_global_step()
        print ("# start training, start lr is %e, final lr will be %e" % (lr.value(cur_batch), final_lr) )
        model.print_head()
        model.train (data, stop_batch)
        print ("# finished training")
        end_time = time.time()
        print ("# running time: %.3f s" % (end_time-start_time))
Exemplo n.º 7
0
    def test_model(self):
        jfile = 'water.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptLocFrame(jdata['model']['descriptor'])
        fitting = EnerFitting(jdata['model']['fitting_net'], descrpt)
        model = Model(jdata['model'], descrpt, fitting)

        # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']])
        input_data = {
            'coord': [test_data['coord']],
            'box': [test_data['box']],
            'type': [test_data['type']],
            'natoms_vec': [test_data['natoms_vec']],
            'default_mesh': [test_data['default_mesh']]
        }
        model._compute_input_stat(input_data)
        model.fitting.bias_atom_e = data.compute_energy_shift()

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        is_training = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred \
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           t_fparam,
                           suffix = "loc_frame",
                           reuse = False)
        energy = model_pred['energy']
        force = model_pred['force']
        virial = model_pred['virial']
        atom_ener = model_pred['atom_ener']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_energy: test_data['energy'][:numb_test],
            t_force: np.reshape(test_data['force'][:numb_test, :], [-1]),
            t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]),
            t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :],
                                    [-1]),
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test)

        e = e.reshape([-1])
        f = f.reshape([-1])
        v = v.reshape([-1])
        refe = [1.165945032784766511e+01]
        reff = [
            2.356319331246305437e-01, 1.772322096063349284e-01,
            1.455439548950788684e-02, 1.968599426000810226e-01,
            2.648214484898352983e-01, 7.595232354012236564e-02,
            -2.121321856338151401e-01, -2.463886119018566037e-03,
            -2.075636300914874069e-02, -9.360310077571798101e-03,
            -1.751965198776750943e-01, -2.046405309983102827e-02,
            -1.990194093283037535e-01, -1.828347741191920298e-02,
            -6.916374506995154325e-02, -1.197997068502068031e-02,
            -2.461097746875573200e-01, 1.987744214930105627e-02
        ]
        refv = [
            -4.998509978510510265e-01, -1.966169437179327711e-02,
            1.136130543869883977e-02, -1.966169437179334650e-02,
            -4.575353297894450555e-01, -2.668666556859019493e-03,
            1.136130543869887100e-02, -2.668666556859039876e-03,
            2.455466940358383508e-03
        ]
        refe = np.reshape(refe, [-1])
        reff = np.reshape(reff, [-1])
        refv = np.reshape(refv, [-1])

        places = 10
        for ii in range(e.size):
            self.assertAlmostEqual(e[ii], refe[ii], places=places)
        for ii in range(f.size):
            self.assertAlmostEqual(f[ii], reff[ii], places=places)
        for ii in range(v.size):
            self.assertAlmostEqual(v[ii], refv[ii], places=places)
Exemplo n.º 8
0
    def test_model(self):
        jfile = 'wfc.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptLocFrame(jdata['model']['descriptor'])
        fitting = WFCFitting(jdata['model']['fitting_net'], descrpt)
        model = WFCModel(jdata['model'], descrpt, fitting)

        input_data = {
            'coord': [test_data['coord']],
            'box': [test_data['box']],
            'type': [test_data['type']],
            'natoms_vec': [test_data['natoms_vec']],
            'default_mesh': [test_data['default_mesh']],
            'fparam': [test_data['fparam']],
        }
        model._compute_dstats(input_data)

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        is_training = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred \
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           t_fparam,
                           suffix = "wfc",
                           reuse = False)
        wfc = model_pred['wfc']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [p] = sess.run([wfc], feed_dict=feed_dict_test)

        p = p.reshape([-1])
        refp = [
            -9.105016838228578990e-01, 7.196284362034099935e-01,
            -9.548516928185298014e-02, 2.764615027095288724e+00,
            2.661319598995644520e-01, 7.579512949131941846e-02,
            -2.107409067376114997e+00, -1.299080016614967414e-01,
            -5.962778584850070285e-01, 2.913899917663253514e-01,
            -1.226917174638697094e+00, 1.829523069930876655e+00,
            1.015704024959750873e+00, -1.792333611099589386e-01,
            5.032898080485321834e-01, 1.808561721292949453e-01,
            2.468863482075112081e+00, -2.566442546384765100e-01,
            -1.467453783795173994e-01, -1.822963931552128658e+00,
            5.843600156865462747e-01, -1.493875280832117403e+00,
            1.693322352814763398e-01, -1.877325443995481624e+00
        ]

        places = 6
        for ii in range(p.size):
            self.assertAlmostEqual(p[ii], refp[ii], places=places)
Exemplo n.º 9
0
    def test_model(self):
        jfile = 'water_se_a.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptSeA(jdata['model']['descriptor'])
        fitting = EnerFitting(jdata['model']['fitting_net'], descrpt)
        model = Model(jdata['model'], descrpt, fitting)

        # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']])
        input_data = {
            'coord': [test_data['coord']],
            'box': [test_data['box']],
            'type': [test_data['type']],
            'natoms_vec': [test_data['natoms_vec']],
            'default_mesh': [test_data['default_mesh']]
        }
        model._compute_dstats(input_data)
        model.bias_atom_e = data.compute_energy_shift()

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        is_training = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred \
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           t_fparam,
                           suffix = "se_a",
                           reuse = False)
        energy = model_pred['energy']
        force = model_pred['force']
        virial = model_pred['virial']
        atom_ener = model_pred['atom_ener']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_energy: test_data['energy'][:numb_test],
            t_force: np.reshape(test_data['force'][:numb_test, :], [-1]),
            t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]),
            t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :],
                                    [-1]),
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test)

        e = e.reshape([-1])
        f = f.reshape([-1])
        v = v.reshape([-1])
        refe = [6.135449167779321300e+01]
        reff = [
            7.799691562262310585e-02, 9.423098804815030483e-02,
            3.790560997388224204e-03, 1.432522403799846578e-01,
            1.148392791403983204e-01, -1.321871172563671148e-02,
            -7.318966526325138000e-02, 6.516069212737778116e-02,
            5.406418483320515412e-04, 5.870713761026503247e-02,
            -1.605402669549013672e-01, -5.089516979826595386e-03,
            -2.554593467731766654e-01, 3.092063507347833987e-02,
            1.510355029451411479e-02, 4.869271842355533952e-02,
            -1.446113274345035005e-01, -1.126524434771078789e-03
        ]
        refv = [
            -6.076776685178300053e-01, 1.103174323630009418e-01,
            1.984250991380156690e-02, 1.103174323630009557e-01,
            -3.319759402259439551e-01, -6.007404107650986258e-03,
            1.984250991380157036e-02, -6.007404107650981921e-03,
            -1.200076017439753642e-03
        ]
        refe = np.reshape(refe, [-1])
        reff = np.reshape(reff, [-1])
        refv = np.reshape(refv, [-1])

        places = 10
        for ii in range(e.size):
            self.assertAlmostEqual(e[ii], refe[ii], places=places)
        for ii in range(f.size):
            self.assertAlmostEqual(f[ii], reff[ii], places=places)
        for ii in range(v.size):
            self.assertAlmostEqual(v[ii], refv[ii], places=places)
Exemplo n.º 10
0
    def test_model(self):
        jfile = 'polar_se_a.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptSeA(jdata['model']['descriptor'])
        fitting = PolarFittingSeA(jdata['model']['fitting_net'], descrpt)
        model = PolarModel(jdata['model'], descrpt, fitting)

        model._compute_dstats([test_data['coord']], [test_data['box']],
                              [test_data['type']], [test_data['natoms_vec']],
                              [test_data['default_mesh']])

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        is_training = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred \
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           t_fparam,
                           suffix = "polar_se_a",
                           reuse = False)
        polar = model_pred['polar']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [p] = sess.run([polar], feed_dict=feed_dict_test)

        p = p.reshape([-1])
        refp = [
            3.39695248e+01, 2.16564043e+01, 8.18501479e-01, 2.16564043e+01,
            1.38211789e+01, 5.22775159e-01, 8.18501479e-01, 5.22775159e-01,
            1.97847218e-02, 8.08467431e-01, 3.42081126e+00, -2.01072261e-01,
            3.42081126e+00, 1.54924596e+01, -9.06153697e-01, -2.01072261e-01,
            -9.06153697e-01, 5.30193262e-02
        ]

        places = 6
        for ii in range(p.size):
            self.assertAlmostEqual(p[ii], refp[ii], places=places)
Exemplo n.º 11
0
    def test_model(self):
        jfile = 'water_se_r.json'
        with open(jfile) as fp:
            jdata = json.load (fp)
        run_opt = RunOptions(None) 
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have (jdata['model']['descriptor'], 'rcut')
        
        data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt = None)
        
        test_data = data.get_test ()
        numb_test = 1
        
        descrpt = DescrptSeR(jdata['model']['descriptor'])
        fitting = EnerFitting(jdata['model']['fitting_net'], descrpt)
        model = Model(jdata['model'], descrpt, fitting)

        # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']])
        input_data = {'coord' : [test_data['coord']], 
                      'box': [test_data['box']], 
                      'type': [test_data['type']],
                      'natoms_vec' : [test_data['natoms_vec']],
                      'default_mesh' : [test_data['default_mesh']]
        }
        model._compute_input_stat(input_data)
        model.descrpt.bias_atom_e = data.compute_energy_shift()

        t_prop_c           = tf.placeholder(tf.float32, [5],    name='t_prop_c')
        t_energy           = tf.placeholder(global_ener_float_precision, [None], name='t_energy')
        t_force            = tf.placeholder(global_tf_float_precision, [None], name='t_force')
        t_virial           = tf.placeholder(global_tf_float_precision, [None], name='t_virial')
        t_atom_ener        = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener')
        t_coord            = tf.placeholder(global_tf_float_precision, [None], name='i_coord')
        t_type             = tf.placeholder(tf.int32,   [None], name='i_type')
        t_natoms           = tf.placeholder(tf.int32,   [model.ntypes+2], name='i_natoms')
        t_box              = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box')
        t_mesh             = tf.placeholder(tf.int32,   [None], name='i_mesh')
        is_training        = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred\
            = model.build (t_coord, 
                           t_type, 
                           t_natoms, 
                           t_box, 
                           t_mesh,
                           t_fparam,
                           suffix = "se_r", 
                           reuse = False)
        energy = model_pred['energy']
        force  = model_pred['force']
        virial = model_pred['virial']
        atom_ener =  model_pred['atom_ener']

        feed_dict_test = {t_prop_c:        test_data['prop_c'],
                          t_energy:        test_data['energy']              [:numb_test],
                          t_force:         np.reshape(test_data['force']    [:numb_test, :], [-1]),
                          t_virial:        np.reshape(test_data['virial']   [:numb_test, :], [-1]),
                          t_atom_ener:     np.reshape(test_data['atom_ener'][:numb_test, :], [-1]),
                          t_coord:         np.reshape(test_data['coord']    [:numb_test, :], [-1]),
                          t_box:           test_data['box']                 [:numb_test, :],
                          t_type:          np.reshape(test_data['type']     [:numb_test, :], [-1]),
                          t_natoms:        test_data['natoms_vec'],
                          t_mesh:          test_data['default_mesh'],
                          is_training:     False}

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [e, f, v] = sess.run([energy, force, virial], 
                             feed_dict = feed_dict_test)

        e = e.reshape([-1])
        f = f.reshape([-1])
        v = v.reshape([-1])
        refe = [6.152085988309423925e+01]
        reff = [-1.714443151616400110e-04,-1.315836609370952051e-04,-5.584120460897444674e-06,-7.197863450669731334e-05,-1.384609799994930676e-04,8.856091902774708468e-06,1.120578238869146797e-04,-7.428703645877488470e-05,9.370560731488587317e-07,-1.048347129617610465e-04,1.977876923815685781e-04,7.522050342771599598e-06,2.361772659657814205e-04,-5.774651813388292487e-05,-1.233143271630744828e-05,2.257277740226381951e-08,2.042905031476775584e-04,6.003548585097267914e-07]
        refv = [1.035180911513190792e-03,-1.118982949050497126e-04,-2.383287813436022850e-05,-1.118982949050497126e-04,4.362023915782403281e-04,8.119543218224559240e-06,-2.383287813436022850e-05,8.119543218224559240e-06,1.201142938802945237e-06]
        refe = np.reshape(refe, [-1])
        reff = np.reshape(reff, [-1])
        refv = np.reshape(refv, [-1])

        places = 6
        for ii in range(e.size) :
            self.assertAlmostEqual(e[ii], refe[ii], places = places)
        for ii in range(f.size) :
            self.assertAlmostEqual(f[ii], reff[ii], places = places)
        for ii in range(v.size) :
            self.assertAlmostEqual(v[ii], refv[ii], places = places)
    def test_model(self):
        jfile = 'water_se_a_aparam.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        # manually set aparam
        test_data['aparam'] = np.load('system/set.000/aparam.npy')
        numb_test = 1

        descrpt = DescrptSeA(jdata['model']['descriptor'])
        fitting = EnerFitting(jdata['model']['fitting_net'], descrpt)
        model = Model(jdata['model'], descrpt, fitting)

        # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']])
        input_data = {
            'coord': [test_data['coord']],
            'box': [test_data['box']],
            'type': [test_data['type']],
            'natoms_vec': [test_data['natoms_vec']],
            'default_mesh': [test_data['default_mesh']],
            'aparam': [test_data['aparam']],
        }
        model._compute_dstats(input_data)
        model.bias_atom_e = data.compute_energy_shift()

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        t_aparam = tf.placeholder(global_tf_float_precision, [None],
                                  name='i_aparam')
        is_training = tf.placeholder(tf.bool)
        input_dict = {}
        input_dict['aparam'] = t_aparam

        model_pred\
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           input_dict,
                           suffix = "se_a_aparam",
                           reuse = False)
        energy = model_pred['energy']
        force = model_pred['force']
        virial = model_pred['virial']
        atom_ener = model_pred['atom_ener']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_energy: test_data['energy'][:numb_test],
            t_force: np.reshape(test_data['force'][:numb_test, :], [-1]),
            t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]),
            t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :],
                                    [-1]),
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            t_aparam: np.reshape(test_data['aparam'][:numb_test, :], [-1]),
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test)

        e = e.reshape([-1])
        f = f.reshape([-1])
        v = v.reshape([-1])
        refe = [61.35473702079649]
        reff = [
            7.789591210641927388e-02, 9.411176646369459609e-02,
            3.785806413688173194e-03, 1.430830954178063386e-01,
            1.146964190520970150e-01, -1.320340288927138173e-02,
            -7.308720494747594776e-02, 6.508269338140809657e-02,
            5.398739145542804643e-04, 5.863268336973800898e-02,
            -1.603409523950408699e-01, -5.083084610994957619e-03,
            -2.551569799443983988e-01, 3.087934885732580501e-02,
            1.508590526622844222e-02, 4.863249399791078065e-02,
            -1.444292753594846324e-01, -1.125098094204559241e-03
        ]
        refv = [
            -6.069498397488943819e-01, 1.101778888191114192e-01,
            1.981907430646132409e-02, 1.101778888191114608e-01,
            -3.315612988100872793e-01, -5.999739184898976799e-03,
            1.981907430646132756e-02, -5.999739184898974197e-03,
            -1.198656608172396325e-03
        ]
        refe = np.reshape(refe, [-1])
        reff = np.reshape(reff, [-1])
        refv = np.reshape(refv, [-1])

        places = 10
        for ii in range(e.size):
            self.assertAlmostEqual(e[ii], refe[ii], places=places)
        for ii in range(f.size):
            self.assertAlmostEqual(f[ii], reff[ii], places=places)
        for ii in range(v.size):
            self.assertAlmostEqual(v[ii], refv[ii], places=places)
Exemplo n.º 13
0
def _main():
    default_num_inter_threads = 0
    parser = argparse.ArgumentParser(description="*** Train a model. ***")
    parser.add_argument('INPUT', help='the input json database ')
    parser.add_argument(
        '-t',
        '--inter-threads',
        type=int,
        default=default_num_inter_threads,
        help='With default value %d. ' % default_num_inter_threads +
        'Setting the "inter_op_parallelism_threads" key for the tensorflow, ' +
        'the "intra_op_parallelism_threads" will be set by the env variable OMP_NUM_THREADS'
    )
    parser.add_argument(
        '--init-model',
        type=str,
        help='Initialize the model by the provided checkpoint.')
    parser.add_argument(
        '--restart',
        type=str,
        help='Restart the training from the provided checkpoint.')
    args = parser.parse_args()

    # load json database
    fp = open(args.INPUT, 'r')
    jdata = json.load(fp)

    # Setup cluster for distributed training
    ps_num = j_must_have(jdata, 'ps_num')
    cluster, my_job_name, my_task_index = tf_config_from_slurm(
        ps_number=ps_num)
    cluster_spec = tf.train.ClusterSpec(cluster)
    server = tf.train.Server(server_or_cluster_def=cluster_spec,
                             job_name=my_job_name,
                             task_index=my_task_index)
    if my_job_name == "ps":
        queue = create_done_queue(cluster_spec, my_task_index)
        print("create queue")
        wait_done_queue(cluster_spec, server, queue, my_task_index)
        #server.join()
    elif my_job_name == "worker":
        is_chief = (my_task_index == 0)
        done_ops = connect_done_queue(cluster_spec, my_task_index)

        # init params and run options
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        numb_sys = len(systems)
        seed = None
        if 'seed' in jdata.keys(): seed = jdata['seed']
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata, 'rcut')
        data = DataSystem(systems, set_pfx, batch_size, test_size, rcut)
        tot_numb_batches = sum(data.get_nbatches())
        lr = LearingRate(jdata, tot_numb_batches)
        final_lr = lr.value(stop_batch)
        run_opt = RunOptions(args)
        if is_chief:
            print("#")
            print("# find %d system(s): " % numb_sys)
            print("#")
            print(
                "# run with intra_op_parallelism_threads = %d, inter_op_parallelism_threads = %d "
                % (run_opt.num_intra_threads, run_opt.num_inter_threads))
        run_opt.cluster = cluster_spec
        run_opt.server = server
        run_opt.is_chief = is_chief
        run_opt.my_job_name = my_job_name
        run_opt.my_task_index = my_task_index

        # init the model
        model = NNPModel(jdata, run_opt=run_opt)
        # build the model with stats from the first system
        model.build(data, lr)
        start_time = time.time()
        cur_batch = 0
        if is_chief:
            print("# start training, start lr is %e, final lr will be %e" %
                  (lr.value(cur_batch), final_lr))
            sys.stdout.flush()
            #model.print_head()
        # train the model with the provided systems in a cyclic way
        model.train(data, stop_batch)
        end_time = time.time()
        if is_chief:
            print("# finished training")
            print("# running time: %.3f s" % (end_time - start_time))
        fill_done_queue(cluster_spec, server, done_ops, my_task_index)
Exemplo n.º 14
0
    def test_model(self):
        jfile = 'water_se_a_fparam.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptSeA(jdata['model']['descriptor'])
        fitting = EnerFitting(jdata['model']['fitting_net'], descrpt)
        model = Model(jdata['model'], descrpt, fitting)

        model._compute_dstats([test_data['coord']], [test_data['box']],
                              [test_data['type']], [test_data['natoms_vec']],
                              [test_data['default_mesh']])
        model.bias_atom_e = data.compute_energy_shift()

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        t_fparam = tf.placeholder(global_tf_float_precision, [None],
                                  name='i_fparam')
        is_training = tf.placeholder(tf.bool)
        input_dict = {}
        input_dict['fparam'] = t_fparam

        model_pred\
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           input_dict,
                           suffix = "se_a_fparam",
                           reuse = False)
        energy = model_pred['energy']
        force = model_pred['force']
        virial = model_pred['virial']
        atom_ener = model_pred['atom_ener']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_energy: test_data['energy'][:numb_test],
            t_force: np.reshape(test_data['force'][:numb_test, :], [-1]),
            t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]),
            t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :],
                                    [-1]),
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            t_fparam: np.reshape(test_data['fparam'][:numb_test, :], [-1]),
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test)

        e = e.reshape([-1])
        f = f.reshape([-1])
        v = v.reshape([-1])
        refe = [6.135136929183754972e+01]
        reff = [
            7.761477777656561328e-02, 9.383013575207051205e-02,
            3.776776376267230399e-03, 1.428268971463224069e-01,
            1.143858253900619654e-01, -1.318441687719179231e-02,
            -7.271897092708884403e-02, 6.494907553857684479e-02,
            5.355599592111062821e-04, 5.840910251709752199e-02,
            -1.599042555763417750e-01, -5.067165555590445389e-03,
            -2.546246315216804113e-01, 3.073296814647456451e-02,
            1.505994759166155023e-02, 4.849282500878367153e-02,
            -1.439937492508420736e-01, -1.120701494357654411e-03
        ]
        refv = [
            -6.054303146013112480e-01, 1.097859194719944115e-01,
            1.977605183964963390e-02, 1.097859194719943976e-01,
            -3.306167096812382966e-01, -5.978855662865613894e-03,
            1.977605183964964083e-02, -5.978855662865616497e-03,
            -1.196331922996723236e-03
        ]
        refe = np.reshape(refe, [-1])
        reff = np.reshape(reff, [-1])
        refv = np.reshape(refv, [-1])

        places = 10
        for ii in range(e.size):
            self.assertAlmostEqual(e[ii], refe[ii], places=places)
        for ii in range(f.size):
            self.assertAlmostEqual(f[ii], reff[ii], places=places)
        for ii in range(v.size):
            self.assertAlmostEqual(v[ii], refv[ii], places=places)