Exemplo n.º 1
0
 def _init_from_frz_model(self):
     # get the model type from the frozen model(self.run_opt.init_frz_model)
     try:
         t_model_type = get_tensor_by_name(self.run_opt.init_frz_model, 'model_type')
         self.model_type = bytes.decode(t_model_type)
     except GraphWithoutTensorError as e:
         # throw runtime error if there's no frozen model
         if not os.path.exists(self.run_opt.init_frz_model):
             raise RuntimeError(
                 "The input frozen model %s (%s) does not exist! Please check the path of the frozen model. " % (self.run_opt.init_frz_model, os.path.abspath(self.run_opt.init_frz_model))
             ) from e
         # throw runtime error if the frozen_model has no model type information...
         else:
             raise RuntimeError(
                 "The input frozen model: %s has no 'model_type' information, "
                 "which is not supported by the 'dp train init-frz-model' interface. " % self.run_opt.init_frz_model
             ) from e
     
     if self.fitting_type != 'ener':
         raise RuntimeError("The 'dp train init-frz-model' command only supports the 'ener' type fitting net currently!")
     # self.frz_model will control the self.model to import the descriptor from the given frozen model instead of building from scratch...
     # initialize fitting net with the given compressed frozen model
     if self.model_type == 'original_model':
         self.descrpt.init_variables(self.run_opt.init_frz_model)
         self.fitting.init_variables(get_fitting_net_variables(self.run_opt.init_frz_model))
         tf.constant("original_model", name = 'model_type', dtype = tf.string)
     elif self.model_type == 'compressed_model':
         self.frz_model = self.run_opt.init_frz_model
         self.fitting.init_variables(get_fitting_net_variables(self.frz_model))
         tf.constant("compressed_model", name = 'model_type', dtype = tf.string)
     else:
         raise RuntimeError("Unknown model type %s" % self.model_type)
Exemplo n.º 2
0
    def init_variables(self,
                       model_file : str,
                       suffix : str = "",
    ) -> None:
        """
        Init the embedding net variables with the given frozen model

        Parameters
        ----------
        model_file : str
            The input frozen model file
        suffix : str, optional
            The suffix of the scope
        """
        self.embedding_net_variables = get_embedding_net_variables(model_file, suffix = suffix)
        self.davg = get_tensor_by_name(model_file, 'descrpt_attr%s/t_avg' % suffix)
        self.tavg = get_tensor_by_name(model_file, 'descrpt_attr%s/t_std' % suffix)
Exemplo n.º 3
0
def _check_compress_type(model_file):
    try:
        t_model_type = bytes.decode(
            get_tensor_by_name(model_file, 'model_type'))
    except GraphWithoutTensorError as e:
        # Compatible with the upgraded model, which has no 'model_type' info
        t_model_type = None

    if t_model_type == "compressed_model":
        raise RuntimeError(
            "The input frozen model %s has already been compressed! Please do not compress the model repeatedly. "
            % model_file)
Exemplo n.º 4
0
def compress(*, input: str, output: str, extrapolate: int, step: float,
             frequency: str, checkpoint_folder: str, training_script: str,
             mpi_log: str, log_path: Optional[str], log_level: int, **kwargs):
    """Compress model.

    The table is composed of fifth-order polynomial coefficients and is assembled from
    two sub-tables. The first table takes the step parameter as the domain's uniform step size,
    while the second table takes 10 * step as it's uniform step size. The range of the
    first table is automatically detected by the code, while the second table ranges
    from the first table's upper boundary(upper) to the extrapolate(parameter) * upper.

    Parameters
    ----------
    input : str
        frozen model file to compress
    output : str
        compressed model filename
    extrapolate : int
        scale of model extrapolation
    step : float
        uniform step size of the tabulation's first table
    frequency : str
        frequency of tabulation overflow check
    checkpoint_folder : str
        trining checkpoint folder for freezing
    training_script : str
        training script of the input frozen model
    mpi_log : str
        mpi logging mode for training
    log_path : Optional[str]
        if speccified log will be written to this file
    log_level : int
        logging level
    """
    try:
        t_jdata = get_tensor_by_name(input, 'train_attr/training_script')
        t_min_nbor_dist = get_tensor_by_name(input, 'train_attr/min_nbor_dist')
        jdata = json.loads(t_jdata)
    except GraphWithoutTensorError as e:
        if training_script == None:
            raise RuntimeError(
                "The input frozen model: %s has no training script or min_nbor_dist information, "
                "which is not supported by the model compression interface. "
                "Please consider using the --training-script command within the model compression interface to provide the training script of the input frozen model. "
                "Note that the input training script must contain the correct path to the training data."
                % input) from e
        elif not os.path.exists(training_script):
            raise RuntimeError(
                "The input training script %s (%s) does not exist! Please check the path of the training script. "
                % (input, os.path.abspath(input))) from e
        else:
            log.info("stage 0: compute the min_nbor_dist")
            jdata = j_loader(training_script)
            jdata = update_deepmd_input(jdata)
            t_min_nbor_dist = get_min_nbor_dist(jdata, get_rcut(jdata))

    _check_compress_type(input)

    tf.constant(t_min_nbor_dist,
                name='train_attr/min_nbor_dist',
                dtype=GLOBAL_ENER_FLOAT_PRECISION)
    jdata["model"]["compress"] = {}
    jdata["model"]["compress"]["model_file"] = input
    jdata["model"]["compress"]["min_nbor_dist"] = t_min_nbor_dist
    jdata["model"]["compress"]["table_config"] = [
        extrapolate,
        step,
        10 * step,
        int(frequency),
    ]
    jdata["training"]["save_ckpt"] = "model-compression/model.ckpt"
    jdata = update_deepmd_input(jdata)
    jdata = normalize(jdata)

    # check the descriptor info of the input file
    # move to the specific Descriptor class

    # stage 1: training or refining the model with tabulation
    log.info("\n\n")
    log.info("stage 1: compress the model")
    control_file = "compress.json"
    with open(control_file, "w") as fp:
        json.dump(jdata, fp, indent=4)
    try:
        train(
            INPUT=control_file,
            init_model=None,
            restart=None,
            init_frz_model=None,
            output=control_file,
            mpi_log=mpi_log,
            log_level=log_level,
            log_path=log_path,
            is_compress=True,
        )
    except GraphTooLargeError as e:
        raise RuntimeError(
            "The uniform step size of the tabulation's first table is %f, "
            "which is too small. This leads to a very large graph size, "
            "exceeding protobuf's limitation (2 GB). You should try to "
            "increase the step size." % step) from e

    # stage 2: freeze the model
    log.info("\n\n")
    log.info("stage 2: freeze the model")
    try:
        freeze(checkpoint_folder=checkpoint_folder,
               output=output,
               node_names=None)
    except GraphTooLargeError as e:
        raise RuntimeError(
            "The uniform step size of the tabulation's first table is %f, "
            "which is too small. This leads to a very large graph size, "
            "exceeding protobuf's limitation (2 GB). You should try to "
            "increase the step size." % step) from e