Exemplo n.º 1
0
def test_shape_dataset_creation(shapes_image_size, shapes_nb_labels):
    """Create a Shapes dataset
    """
    d = ShapeDataset(shapes_image_size)
    assert d.image_size == shapes_image_size
    assert d.get_nb_labels() == shapes_nb_labels
    assert d.get_nb_images() == 0
Exemplo n.º 2
0
def test_shape_dataset_population(shapes_image_size, shapes_nb_images,
                                  shapes_nb_labels, shapes_config,
                                  shapes_temp_dir):
    """Populate a Shapes dataset
    """
    d = ShapeDataset(shapes_image_size)
    d.populate(str(shapes_temp_dir), nb_images=shapes_nb_images)
    d.save(str(shapes_config))
    assert d.get_nb_labels() == shapes_nb_labels
    assert d.get_nb_images() == shapes_nb_images
    assert os.path.isfile(str(shapes_config))
    assert all(
        len(os.listdir(os.path.join(str(shapes_temp_dir), tmp_dir))) ==
        shapes_nb_images for tmp_dir in ["images", "labels"])
Exemplo n.º 3
0
def test_shape_dataset_loading(shapes_image_size, shapes_nb_images,
                               shapes_nb_labels, shapes_sample_config):
    """Load images into a Shapes dataset
    """
    d = ShapeDataset(shapes_image_size)
    d.load(shapes_sample_config)
    assert d.get_nb_labels() == shapes_nb_labels
    assert d.get_nb_images() == shapes_nb_images
Exemplo n.º 4
0
    aggregate_value = "full" if not args.aggregate_label else "aggregated"
    input_folder = utils.prepare_input_folder(args.datapath, args.dataset)
    prepro_folder = utils.prepare_preprocessed_folder(args.datapath,
                                                      args.dataset,
                                                      args.image_size,
                                                      aggregate_value)

    # Dataset creation
    if args.dataset == "mapillary":
        config_name = "config.json" if not args.aggregate_label else "config_aggregate.json"
        config_path = os.path.join(input_folder, config_name)
        train_dataset = MapillaryDataset(args.image_size, config_path)
        validation_dataset = MapillaryDataset(args.image_size, config_path)
        test_dataset = MapillaryDataset(args.image_size, config_path)
    elif args.dataset == "shapes":
        train_dataset = ShapeDataset(args.image_size)
        validation_dataset = ShapeDataset(args.image_size)
        test_dataset = ShapeDataset(args.image_size)
    else:
        utils.logger.error(
            "Unsupported dataset type. Please choose 'mapillary' or 'shapes'")
        sys.exit(1)

    # Dataset populating/loading (depends on the existence of a specification file)
    if os.path.isfile(prepro_folder["training_config"]):
        train_dataset.load(prepro_folder["training_config"],
                           args.nb_training_image)
    else:
        utils.logger.info(
            ("No existing configuration file for this dataset. Create {}"
             "").format(prepro_folder["training_config"]))