Exemplo n.º 1
0
def test_classification():
    # Make dataset
    n_classes = 2
    n_samples = 1000
    n_features = 48
    x, y = make_classification(n_samples=n_samples,
                               n_features=n_features,
                               n_classes=n_classes,
                               n_informative=n_classes * 2,
                               random_state=1)
    x = x.astype(dp.float_)
    y = y.astype(dp.int_)
    n_train = int(0.8 * n_samples)
    x_train = x[:n_train]
    y_train = y[:n_train]
    x_test = x[n_train:]
    y_test = y[n_train:]

    scaler = dp.StandardScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

    # Setup feeds
    batch_size = 16
    train_feed = dp.SupervisedFeed(x_train, y_train, batch_size=batch_size)
    test_feed = dp.Feed(x_test)

    # Setup neural network
    weight_decay = 1e-03
    net = dp.NeuralNetwork(
        layers=[
            dp.Affine(
                n_out=32,
                weights=dp.Parameter(dp.AutoFiller(),
                                     weight_decay=weight_decay),
            ),
            dp.ReLU(),
            dp.Affine(
                n_out=64,
                weights=dp.Parameter(dp.AutoFiller(),
                                     weight_decay=weight_decay),
            ),
            dp.ReLU(),
            dp.Affine(
                n_out=n_classes,
                weights=dp.Parameter(dp.AutoFiller()),
            ),
        ],
        loss=dp.SoftmaxCrossEntropy(),
    )

    # Train neural network
    learn_rule = dp.Momentum(learn_rate=0.01 / batch_size, momentum=0.9)
    trainer = dp.GradientDescent(net, train_feed, learn_rule)
    trainer.train_epochs(n_epochs=10)

    # Evaluate on test data
    error = np.mean(net.predict(test_feed) != y_test)
    print('Test error rate: %.4f' % error)
    assert error < 0.2
Exemplo n.º 2
0
def run():
    # Prepare data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data(flat=True)
    x = x.astype(dp.float_)
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]

    scaler = dp.UniformScaler(high=255.)
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

    batch_size = 128
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup neural network
    net = dp.NeuralNetwork(
        layers=[
            dp.FullyConnected(
                n_output=800,
                weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
            ),
            dp.Activation('relu'),
            dp.FullyConnected(
                n_output=800,
                weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
            ),
            dp.Activation('relu'),
            dp.FullyConnected(
                n_output=dataset.n_classes,
                weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
            ),
            dp.MultinomialLogReg(),
        ],
    )

    # Train neural network
    def val_error():
        return net.error(test_input)
    trainer = dp.StochasticGradientDescent(
        max_epochs=25,
        learn_rule=dp.Momentum(learn_rate=0.1, momentum=0.9),
    )
    trainer.train(net, train_input, val_error)

    # Visualize weights from first layer
    W = next(np.array(layer.params()[0].array) for layer in net.layers
             if isinstance(layer, dp.FullyConnected))
    W = np.reshape(W.T, (-1, 28, 28))
    filepath = os.path.join('mnist', 'mlp_weights.png')
    dp.misc.img_save(dp.misc.img_tile(dp.misc.img_stretch(W)), filepath)

    # Evaluate on test data
    error = net.error(test_input)
    print('Test error rate: %.4f' % error)
Exemplo n.º 3
0
def run():
    # Prepare data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data(flat=True)
    x = x.astype(dp.float_)/255.0
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=128)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup neural network
    nn = dp.NeuralNetwork(
        layers=[
            dp.Dropout(0.2),
            dp.DropoutFullyConnected(
                n_output=800,
                dropout=0.5,
                weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                     penalty=('l2', 0.00001), monitor=True),
            ),
            dp.Activation('relu'),
            dp.DropoutFullyConnected(
                n_output=800,
                dropout=0.5,
                weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                     penalty=('l2', 0.00001), monitor=True),
            ),
            dp.Activation('relu'),
            dp.DropoutFullyConnected(
                n_output=dataset.n_classes,
                weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                     penalty=('l2', 0.00001), monitor=True),
            ),
            dp.MultinomialLogReg(),
        ],
    )

    # Train neural network
    def valid_error():
        return nn.error(test_input)
    trainer = dp.StochasticGradientDescent(
        max_epochs=50,
        learn_rule=dp.Momentum(learn_rate=0.1, momentum=0.9),
    )
    trainer.train(nn, train_input, valid_error)

    # Visualize weights from first layer
    W = next(np.array(layer.params()[0].values) for layer in nn.layers
             if isinstance(layer, dp.FullyConnected))
    W = np.reshape(W.T, (-1, 28, 28))
    dp.misc.img_save(dp.misc.img_tile(dp.misc.img_stretch(W)),
                     os.path.join('mnist', 'mlp_dropout_weights.png'))

    # Evaluate on test data
    error = nn.error(test_input)
    print('Test error rate: %.4f' % error)
def affine(n_out, gain, wdecay=0.0, bias=0.0):
    if bias is None:
        return ex.nnet.Linear(
            n_out=n_out,
            weights=dp.Parameter(dp.AutoFiller(gain), weight_decay=wdecay),
        )
    else:
        return ex.nnet.Affine(
            n_out=n_out,
            bias=bias,
            weights=dp.Parameter(dp.AutoFiller(gain), weight_decay=wdecay),
        )
Exemplo n.º 5
0
def conv_layer(n_filters):
    return dp.Convolution(
        n_filters=n_filters,
        filter_shape=(5, 5),
        border_mode='valid',
        weights=dp.Parameter(dp.AutoFiller(gain=1.39), weight_decay=0.0005),
    )
Exemplo n.º 6
0
def conv_layer(n_filters):
    return dp.Convolution(
        n_filters=32,
        filter_shape=(5, 5),
        border_mode='full',
        weights=dp.Parameter(dp.AutoFiller(gain=1.25), weight_decay=0.003),
    )
def backconv(n_filters, filter_size, stride=2, gain=1.0, wdecay=0.0, bias=0.0):
    return ex.nnet.BackwardConvolution(
        n_filters=n_filters,
        strides=(stride, stride),
        weights=dp.Parameter(dp.AutoFiller(gain), weight_decay=wdecay),
        bias=bias,
        filter_shape=(filter_size, filter_size),
        border_mode='same',
    )
Exemplo n.º 8
0
    def __init__(self, game_name, run_id):

        self.number_of_actions = len(action_dict[game_name])
        valid_actions = action_dict[game_name]

        net.layers[-2] = dp.FullyConnected(n_output=self.number_of_actions,
                                           weights=dp.Parameter(
                                               dp.NormalFiller(sigma=0.1),
                                               weight_decay=0.004,
                                               monitor=False))

        self.memory = MemoryD(self.memory_size)

        self.ale = ALE(valid_actions,
                       run_id,
                       display_screen="false",
                       skip_frames=4,
                       game_ROM='ale/roms/' + game_name + '.bin')

        self.nnet = net
        self.q_values = []
        self.test_game_scores = []
import deeppy as dp

# Setup neural network
pool_kwargs = {
    'win_shape': (3, 3),
    'strides': (2, 2),
    'border_mode': 'same',
    'method': 'max',
}
net = dp.NeuralNetwork(layers=[
    dp.Convolutional(
        n_filters=32,
        filter_shape=(5, 5),
        border_mode='same',
        weights=dp.Parameter(dp.NormalFiller(sigma=0.0001),
                             weight_decay=0.004,
                             monitor=True),
    ),
    dp.Activation('relu'),
    dp.Pool(**pool_kwargs),
    dp.Convolutional(
        n_filters=32,
        filter_shape=(5, 5),
        border_mode='same',
        weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                             weight_decay=0.004,
                             monitor=True),
    ),
    dp.Activation('relu'),
    dp.Pool(**pool_kwargs),
    dp.Convolutional(
Exemplo n.º 10
0
def run():
    # Prepare data
    batch_size = 128
    dataset = dp.datasets.CIFAR10()
    x, y = dataset.data()
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = preprocess_imgs(x[train_idx])
    y_train = y[train_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)

    # Setup neural network
    pool_kwargs = {
        'win_shape': (3, 3),
        'strides': (2, 2),
        'border_mode': 'same',
        'method': 'max',
    }
    nn = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.0001),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=64,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=64,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.Activation('relu'),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.MultinomialLogReg(),
    ], )

    dp.misc.profile(nn, train_input)
Exemplo n.º 11
0
def test_classification():
    # Make dataset
    n_classes = 2
    n_samples = 1000
    n_features = 48
    x, y = make_classification(
        n_samples=n_samples, n_features=n_features, n_classes=n_classes,
        n_informative=n_classes*2, random_state=1
    )

    n_train = int(0.8 * n_samples)
    n_val = int(0.5 * (n_samples - n_train))

    x_train = x[:n_train]
    y_train = y[:n_train]
    x_val = x[n_train:n_train+n_val]
    y_val = y[n_train:n_train+n_val]
    x_test = x[n_train+n_val:]
    y_test = y[n_train+n_val:]

    scaler = dp.StandardScaler()
    x_train = scaler.fit_transform(x_train)
    x_val = scaler.transform(x_val)
    x_test = scaler.transform(x_test)

    # Setup input
    batch_size = 16
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)
    val_input = dp.Input(x_val)
    test_input = dp.Input(x_test)

    # Setup neural network
    weight_decay = 1e-03
    net = dp.NeuralNetwork(
        layers=[
            dp.Affine(
                n_out=32,
                weights=dp.Parameter(dp.AutoFiller(),
                                     weight_decay=weight_decay),
            ),
            dp.ReLU(),
            dp.Affine(
                n_out=64,
                weights=dp.Parameter(dp.AutoFiller(),
                                     weight_decay=weight_decay),
            ),
            dp.ReLU(),
            dp.Affine(
                n_out=n_classes,
                weights=dp.Parameter(dp.AutoFiller()),
            ),
        ],
        loss=dp.SoftmaxCrossEntropy(),
    )

    # Train neural network
    def val_error():
        return np.mean(net.predict(val_input) != y_val)
    trainer = dp.GradientDescent(
        min_epochs=10, learn_rule=dp.Momentum(learn_rate=0.01, momentum=0.9),
    )
    trainer.train(net, train_input, val_error)

    # Evaluate on test data
    error = np.mean(net.predict(test_input) != y_test)
    print('Test error rate: %.4f' % error)
    assert error < 0.2
Exemplo n.º 12
0
weight_gain_fc = 1.84
weight_decay_fc = 0.002
net = dp.NeuralNetwork(
    layers=[
        conv_layer(32),
        dp.Activation('relu'),
        pool_layer(),
        conv_layer(64),
        dp.Activation('relu'),
        pool_layer(),
        dp.Flatten(),
        dp.DropoutFullyConnected(
            n_out=512,
            dropout=0.5,
            weights=dp.Parameter(dp.AutoFiller(weight_gain_fc),
                                 weight_decay=weight_decay_fc),
        ),
        dp.Activation('relu'),
        dp.FullyConnected(
            n_out=dataset.n_classes,
            weights=dp.Parameter(dp.AutoFiller(weight_gain_fc)),
        ),
    ],
    loss=dp.SoftmaxCrossEntropy(),
)

# Train network
n_epochs = [50, 15, 15]
learn_rate = 0.05
momentum = 0.88
for i, epochs in enumerate(n_epochs):
Exemplo n.º 13
0
        method='max',
    )


net = dp.NeuralNetwork(
    layers=[
        conv_layer(32),
        dp.ReLU(),
        pool_layer(),
        conv_layer(32),
        dp.ReLU(),
        pool_layer(),
        conv_layer(64),
        dp.ReLU(),
        pool_layer(),
        dp.Flatten(),
        dp.Dropout(),
        dp.Affine(n_out=64,
                  weights=dp.Parameter(dp.AutoFiller(gain=1.25),
                                       weight_decay=0.03)),
        dp.ReLU(),
        dp.Affine(
            n_out=dataset.n_classes,
            weights=dp.Parameter(dp.AutoFiller(gain=1.25)),
        )
    ],
    loss=dp.SoftmaxCrossEntropy(),
)

profile(net, train_input)
Exemplo n.º 14
0
def run():
    # Prepare data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data()
    x = x[:, np.newaxis, :, :].astype(dp.float_) / 255.0 - 0.5
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=128)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup neural network
    nn = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=20,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.00001)),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(2, 2),
            strides=(2, 2),
            method='max',
        ),
        dp.Convolutional(
            n_filters=50,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.00001)),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(2, 2),
            strides=(2, 2),
            method='max',
        ),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=500,
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.MultinomialLogReg(),
    ], )

    # Train neural network
    def valid_error():
        return nn.error(test_input)

    trainer = dp.StochasticGradientDescent(
        max_epochs=15,
        learn_rule=dp.Momentum(learn_rate=0.1, momentum=0.9),
    )
    trainer.train(nn, train_input, valid_error)

    # Visualize convolutional filters to disk
    for layer_idx, layer in enumerate(nn.layers):
        if not isinstance(layer, dp.Convolutional):
            continue
        W = np.array(layer.params()[0].values)
        dp.misc.img_save(
            dp.misc.conv_filter_tile(W),
            os.path.join('mnist', 'convnet_layer_%i.png' % layer_idx))

    # Evaluate on test data
    error = nn.error(test_input)
    print('Test error rate: %.4f' % error)
Exemplo n.º 15
0
def run():
    # Prepare data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data()
    x = x.astype(dp.float_)[:, np.newaxis, :, :]
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]

    scaler = dp.UniformScaler(high=255.)
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

    batch_size = 128
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup neural network
    net = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(3, 3),
            strides=(2, 2),
            method='max',
        ),
        dp.Convolutional(
            n_filters=64,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(3, 3),
            strides=(2, 2),
            method='max',
        ),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=128,
            weights=dp.Parameter(dp.AutoFiller()),
        ),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.Parameter(dp.AutoFiller()),
        ),
        dp.MultinomialLogReg(),
    ], )

    # Train neural network
    def val_error():
        return net.error(test_input)

    trainer = dp.StochasticGradientDescent(
        max_epochs=15,
        learn_rule=dp.Momentum(learn_rate=0.01, momentum=0.9),
    )
    trainer.train(net, train_input, val_error)

    # Visualize convolutional filters to disk
    for l, layer in enumerate(net.layers):
        if not isinstance(layer, dp.Convolutional):
            continue
        W = np.array(layer.params()[0].array)
        filepath = os.path.join('mnist', 'conv_layer_%i.png' % l)
        dp.misc.img_save(dp.misc.conv_filter_tile(W), filepath)

    # Evaluate on test data
    error = net.error(test_input)
    print('Test error rate: %.4f' % error)
Exemplo n.º 16
0
        ])
        for i in range(numberOfModels):
            cor[i] = np.corrcoef(cnn_rep[:, i], pred_train[:, i])[0, 1]

        svm_model = OneVsRestClassifier(LinearSVC(random_state=0))
        svm_model.fit(cnn_rep[:, 0:numberOfModels], cnn_targets)
        prediction = svm_model.predict(pred)

        acc = np.sum(prediction == y_test) / float(np.size(y_test))

        # Setup neural network using the stacked autoencoder layers
        net = dp.NeuralNetwork(
            [
                dp.FullyConnected(
                    n_out=100,  #neuronNum[-1],
                    weights=dp.Parameter(dp.AutoFiller()),
                ),
                dp.Sigmoid(),
                dp.FullyConnected(
                    n_out=10,
                    weights=dp.Parameter(dp.AutoFiller()),
                ),
            ],
            loss=dp.loss.MeanSquaredError(),
        )

        # Fine-tune neural network
        train_input = dp.SupervisedInput(brain_rep,
                                         cnn_rep,
                                         batch_size=batch_size)
        test_input = dp.Input(x_test)
Exemplo n.º 17
0
def run():
    # Prepare data
    batch_size = 128
    dataset = dp.datasets.CIFAR10()
    x, y = dataset.data()
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = preprocess_imgs(x[train_idx])
    y_train = y[train_idx]
    x_test = preprocess_imgs(x[test_idx])
    y_test = y[test_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)
    test_input = dp.SupervisedInput(x_test, y_test, batch_size=batch_size)

    # Setup neural network
    pool_kwargs = {
        'win_shape': (3, 3),
        'strides': (2, 2),
        'border_mode': 'same',
        'method': 'max',
    }
    nn = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.0001),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=64,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=64,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.Activation('relu'),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.MultinomialLogReg(),
    ], )

    # Train neural network
    n_epochs = [8, 8]
    learn_rate = 0.001

    def valid_error():
        return nn.error(test_input)

    for i, max_epochs in enumerate(n_epochs):
        lr = learn_rate / 10**i
        trainer = dp.StochasticGradientDescent(
            max_epochs=max_epochs,
            learn_rule=dp.Momentum(learn_rate=lr, momentum=0.9),
        )
        trainer.train(nn, train_input, valid_error)

    # Visualize convolutional filters to disk
    for l, layer in enumerate(nn.layers):
        if not isinstance(layer, dp.Convolutional):
            continue
        W = np.array(layer.params()[0].values)
        dp.misc.img_save(dp.misc.conv_filter_tile(W),
                         os.path.join('cifar10', 'convnet_layer_%i.png' % l))

    # Evaluate on test data
    error = nn.error(test_input)
    print('Test error rate: %.4f' % error)
Exemplo n.º 18
0
def run():
    # Prepare MNIST data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data(flat=True)
    x = x.astype(dp.float_)
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]

    scaler = dp.UniformScaler(high=255.)
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

    # Generate image pairs
    n_pairs = 100000
    x1 = np.empty((n_pairs, 28 * 28), dtype=dp.float_)
    x2 = np.empty_like(x1, dtype=dp.float_)
    y = np.empty(n_pairs, dtype=dp.int_)
    n_imgs = x_train.shape[0]
    n = 0
    while n < n_pairs:
        i = random.randint(0, n_imgs - 1)
        j = random.randint(0, n_imgs - 1)
        if i == j:
            continue
        x1[n, ...] = x_train[i]
        x2[n, ...] = x_train[j]
        if y_train[i] == y_train[j]:
            y[n] = 1
        else:
            y[n] = 0
        n += 1

    # Input to network
    train_input = dp.SupervisedSiameseInput(x1, x2, y, batch_size=128)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup network
    net = dp.SiameseNetwork(
        siamese_layers=[
            dp.Dropout(),
            dp.FullyConnected(
                n_output=800,
                weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001),
            ),
            dp.Activation('relu'),
            dp.FullyConnected(
                n_output=800,
                weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001),
            ),
            dp.Activation('relu'),
            dp.FullyConnected(
                n_output=2,
                weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.00001),
            ),
        ],
        loss_layer=dp.ContrastiveLoss(margin=0.5),
    )

    # Train network
    trainer = dp.StochasticGradientDescent(
        max_epochs=10,
        learn_rule=dp.RMSProp(learn_rate=0.001),
    )
    trainer.train(net, train_input)

    # Visualize feature space
    feat = net.features(test_input)
    colors = [
        'tomato', 'lawngreen', 'royalblue', 'gold', 'saddlebrown', 'violet',
        'turquoise', 'mediumpurple', 'darkorange', 'darkgray'
    ]
    plt.figure()
    for i in range(10):
        plt.scatter(feat[y_test == i, 0],
                    feat[y_test == i, 1],
                    s=3,
                    c=colors[i],
                    linewidths=0)
    plt.legend([str(i) for i in range(10)], scatterpoints=1, markerscale=4)
    if not os.path.exists('mnist'):
        os.mkdirs('mnist')
    plt.savefig(os.path.join('mnist', 'siamese_dists.png'), dpi=200)
Exemplo n.º 19
0
    else:
        y[n] = 0
    n += 1

# Prepare network feeds
batch_size = 128
train_feed = dp.SupervisedSiameseFeed(x1, x2, y, batch_size=batch_size)

# Setup network
w_gain = 1.5
w_decay = 1e-4
net = dp.SiameseNetwork(
    siamese_layers=[
        dp.Affine(
            n_out=1024,
            weights=dp.Parameter(dp.AutoFiller(w_gain), weight_decay=w_decay),
        ),
        dp.ReLU(),
        dp.Affine(
            n_out=1024,
            weights=dp.Parameter(dp.AutoFiller(w_gain), weight_decay=w_decay),
        ),
        dp.ReLU(),
        dp.Affine(
            n_out=2,
            weights=dp.Parameter(dp.AutoFiller(w_gain)),
        ),
    ],
    loss=dp.ContrastiveLoss(margin=1.0),
)
import numpy as np
import deeppy as dp

net = dp.NeuralNetwork(layers=[
    dp.Convolutional(
        n_filters=32,
        filter_shape=(5, 5),
        weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
    ),
    dp.Activation('relu'),
    dp.Pool(
        win_shape=(3, 3),
        strides=(2, 2),
        method='max',
    ),
    dp.Convolutional(
        n_filters=64,
        filter_shape=(5, 5),
        weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
    ),
    dp.Activation('relu'),
    dp.Pool(
        win_shape=(3, 3),
        strides=(2, 2),
        method='max',
    ),
    dp.Flatten(),
    dp.FullyConnected(
        n_output=128,
        weights=dp.Parameter(dp.AutoFiller()),
    ),