def plot_episode_red(df, E): #, center_line, inner_border, outer_border):
    fig = plt.figure(1, figsize=(trkSizeX/5, trkSizeY/5))
    ax = fig.add_subplot(211)
    ax.set_aspect(aspect=1)
    pu.print_border(ax, track, color="WhiteSmoke") # center_line, inner_border, outer_border) 
    episode_data = df[df['episode'] == E]
    for row in episode_data.iterrows():
        x1,y1,action,reward = row[1]['x'], row[1]['y'], row[1]['action'], row[1]['reward']
        car_x2, car_y2 = x1 - 0.02, y1
        plt.plot([x1, car_x2], [y1, car_y2], 'r.')        
def plot_episode_color(df, E): #, center_line, inner_border, outer_border):
    fig = plt.figure(1, figsize=(trkSizeX/5, trkSizeY/5))
    ax = fig.add_subplot(211)
    ax.set_aspect(aspect=1)
    pu.print_border(ax, track, color="WhiteSmoke") # center_line, inner_border, outer_border) 
    episode_data = df[df['episode'] == E]
    for row in episode_data.iterrows():
        x1,y1,action,reward = row[1]['x'], row[1]['y'], row[1]['action'], row[1]['reward']
        actidx = int(action)
        action_color = asl[int(action)].color
        action_s = (asl[int(action)].throttle / maxThrottle)**2 * 50 # tune the size of the dots
        #print(action_color)
        #plt.scatter([x1, car_x2], [y1, car_y2], color=action_color, s=action_s, alpha=0.65)
        plt.scatter(x1, y1, color=action_color, s=action_s, alpha=0.75)