Exemplo n.º 1
0
    def __init__(
        self,
        image_size: tuple,
        out_channels: int,
        num_channel_initial: int,
        depth: int,
        out_kernel_initializer: str,
        out_activation: str,
        pooling: bool = True,
        concat_skip: bool = False,
        name: str = "Unet",
        **kwargs,
    ):
        """
        Initialise UNet.

        :param image_size: (dim1, dim2, dim3), dims of input image.
        :param out_channels: number of channels for the output
        :param num_channel_initial: number of initial channels
        :param depth: input is at level 0, bottom is at level depth
        :param out_kernel_initializer: kernel initializer for the last layer
        :param out_activation: activation at the last layer
        :param pooling: for downsampling, use non-parameterized
                        pooling if true, otherwise use conv3d
        :param concat_skip: when upsampling, concatenate skipped
                            tensor if true, otherwise use addition
        :param name: name of the backbone.
        :param kwargs: additional arguments.
        """
        super().__init__(
            image_size=image_size,
            out_channels=out_channels,
            num_channel_initial=num_channel_initial,
            out_kernel_initializer=out_kernel_initializer,
            out_activation=out_activation,
            name=name,
            **kwargs,
        )

        # init layer variables
        num_channels = [num_channel_initial * (2**d) for d in range(depth + 1)]

        self._num_channel_initial = num_channel_initial
        self._depth = depth
        self._downsample_blocks = [
            layer.DownSampleResnetBlock(filters=num_channels[d],
                                        pooling=pooling) for d in range(depth)
        ]
        self._bottom_conv3d = layer.Conv3dBlock(filters=num_channels[depth])
        self._bottom_res3d = layer.Residual3dBlock(filters=num_channels[depth])
        self._upsample_blocks = [
            layer.UpSampleResnetBlock(filters=num_channels[d],
                                      concat=concat_skip) for d in range(depth)
        ]
        self._output_conv3d = layer.Conv3dWithResize(
            output_shape=image_size,
            filters=out_channels,
            kernel_initializer=out_kernel_initializer,
            activation=out_activation,
        )
Exemplo n.º 2
0
    def __init__(self,
                 image_size, out_channels,
                 num_channel_initial, depth,
                 out_kernel_initializer, out_activation,
                 pooling=True, concat_skip=False, **kwargs):
        """
        :param image_size: [f_dim1, f_dim2, f_dim3]
        :param out_channels: number of channels for the output
        :param num_channel_initial:
        :param depth: input is at level 0, bottom is at level depth
        :param out_kernel_initializer:
        :param out_activation:
        :param pooling: true if use pooling to down sample
        :param kwargs:
        """
        super(UNet, self).__init__(**kwargs)

        # init layer variables
        nc = [num_channel_initial * (2 ** d) for d in range(depth + 1)]

        self._num_channel_initial = num_channel_initial
        self._depth = depth
        self._downsample_blocks = [layer.DownSampleResnetBlock(filters=nc[d], pooling=pooling)
                                   for d in range(depth)]
        self._bottom_conv3d = layer.Conv3dBlock(filters=nc[depth])
        self._bottom_res3d = layer.Residual3dBlock(filters=nc[depth])
        self._upsample_blocks = [layer.UpSampleResnetBlock(filters=nc[d], concat=concat_skip)
                                 for d in range(depth)]
        self._output_conv3d = layer.Conv3dWithResize(output_shape=image_size, filters=out_channels,
                                                     kernel_initializer=out_kernel_initializer,
                                                     activation=out_activation)
Exemplo n.º 3
0
    def __init__(
        self,
        image_size,
        out_channels,
        num_channel_initial,
        depth,
        out_kernel_initializer,
        out_activation,
        pooling=True,
        concat_skip=False,
        **kwargs,
    ):
        """
        Initialise UNet.

        :param image_size: list, [f_dim1, f_dim2, f_dim3], dims of input image.
        :param out_channels: int, number of channels for the output
        :param num_channel_initial: int, number of initial channels
        :param depth: int, input is at level 0, bottom is at level depth
        :param out_kernel_initializer: str, which kernel to use as initialiser
        :param out_activation: str, activation at last layer
        :param pooling: Boolean, for downsampling, use non-parameterized
                        pooling if true, otherwise use conv3d
        :param concat_skip: Boolean, when upsampling, concatenate skipped
                            tensor if true, otherwise use addition
        :param kwargs:
        """
        super(UNet, self).__init__(**kwargs)

        # init layer variables
        num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)]

        self._num_channel_initial = num_channel_initial
        self._depth = depth
        self._downsample_blocks = [
            layer.DownSampleResnetBlock(filters=num_channels[d], pooling=pooling)
            for d in range(depth)
        ]
        self._bottom_conv3d = layer.Conv3dBlock(filters=num_channels[depth])
        self._bottom_res3d = layer.Residual3dBlock(filters=num_channels[depth])
        self._upsample_blocks = [
            layer.UpSampleResnetBlock(filters=num_channels[d], concat=concat_skip)
            for d in range(depth)
        ]
        self._output_conv3d = layer.Conv3dWithResize(
            output_shape=image_size,
            filters=out_channels,
            kernel_initializer=out_kernel_initializer,
            activation=out_activation,
        )
Exemplo n.º 4
0
def test_downsampleResnetBlock():
    """
    Test the layer.DownSampleResnetBlock class and its default attributes. No need to test the call() function since a
    concatenation of tensorflow classes
    """
    model = layer.DownSampleResnetBlock(8)

    assert model._pooling is True

    assert isinstance(model._conv3d_block, type(layer.Conv3dBlock(8)))
    assert isinstance(model._residual_block, type(layer.Residual3dBlock(8)))
    assert isinstance(model._max_pool3d, type(layer.MaxPool3d(2)))
    assert model._conv3d_block3 is None

    model = layer.DownSampleResnetBlock(8, pooling=False)
    assert model._max_pool3d is None
    assert isinstance(model._conv3d_block3, type(layer.Conv3dBlock(8)))
Exemplo n.º 5
0
def test_residual3d_block():
    """
    Test the layer.Residual3dBlock class and its default attributes.
    """
    res3d_block = layer.Residual3dBlock(8)

    assert isinstance(res3d_block._conv3d_block, layer.Conv3dBlock)
    assert res3d_block._conv3d_block._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert res3d_block._conv3d_block._conv3d._conv3d.strides == (1, 1, 1)

    assert isinstance(res3d_block._conv3d, layer.Conv3d)
    assert res3d_block._conv3d._conv3d.use_bias is False
    assert res3d_block._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert res3d_block._conv3d._conv3d.strides == (1, 1, 1)

    assert isinstance(res3d_block._act._act, type(tf.keras.activations.relu))
    assert isinstance(res3d_block._norm._norm, tf.keras.layers.BatchNormalization)
Exemplo n.º 6
0
def test_init_UNet():
    """
    Testing init of UNet as expected
    """
    local_test = u.UNet(
        image_size=[1, 2, 3],
        out_channels=3,
        num_channel_initial=3,
        depth=5,
        out_kernel_initializer="he_normal",
        out_activation="softmax",
    )

    #  Asserting num channels initial is the same, Pass
    assert local_test._num_channel_initial == 3

    #  Asserting depth is the same, Pass
    assert local_test._depth == 5

    # Assert downsample blocks type is correct, Pass
    assert all(
        isinstance(item, type(layer.DownSampleResnetBlock(12)))
        for item in local_test._downsample_blocks
    )
    #  Assert number of downsample blocks is correct (== depth), Pass
    assert len(local_test._downsample_blocks) == 5

    #  Assert bottom_conv3d type is correct, Pass
    assert isinstance(local_test._bottom_conv3d, type(layer.Conv3dBlock(5)))

    # Assert bottom res3d type is correct, Pass
    assert isinstance(local_test._bottom_res3d, type(layer.Residual3dBlock(5)))
    # Assert upsample blocks type is correct, Pass
    assert all(
        isinstance(item, type(layer.UpSampleResnetBlock(12)))
        for item in local_test._upsample_blocks
    )
    #  Assert number of upsample blocks is correct (== depth), Pass
    assert len(local_test._upsample_blocks) == 5

    # Assert output_conv3d is correct type, Pass
    assert isinstance(
        local_test._output_conv3d, type(layer.Conv3dWithResize([1, 2, 3], 3))
    )
Exemplo n.º 7
0
def test_residual3dBlock():
    """
    Test the layer.Residual3dBlock class and its default attributes. No need to test the call() function since a
    concatenation of tensorflow classes
    """
    res3dBlock = layer.Residual3dBlock(8)

    assert isinstance(res3dBlock._conv3d_block, type(layer.Conv3dBlock(8)))
    assert res3dBlock._conv3d_block._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert res3dBlock._conv3d_block._conv3d._conv3d.strides == (1, 1, 1)

    assert isinstance(res3dBlock._conv3d, type(layer.Conv3d(8)))
    assert res3dBlock._conv3d._conv3d.use_bias is False
    assert res3dBlock._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert res3dBlock._conv3d._conv3d.strides == (1, 1, 1)

    assert isinstance(res3dBlock._act._act, type(tf.keras.activations.relu))
    assert isinstance(res3dBlock._norm._norm,
                      type(tf.keras.layers.BatchNormalization()))
Exemplo n.º 8
0
def test_upsampleResnetBlock():
    """
    Test the layer.UpSampleResnetBlock class and its default attributes. No need to test the call() function since a
    concatenation of tensorflow classes
    """
    batch_size = 5
    channels = 4
    input_size = (32, 32, 16)
    output_size = (64, 64, 32)

    input_tensor_size = (batch_size, ) + input_size + (channels, )
    skip_tensor_size = (batch_size, ) + output_size + (channels // 2, )

    model = layer.UpSampleResnetBlock(8)
    model.build([input_tensor_size, skip_tensor_size])

    assert model._filters == 8
    assert model._concat is False
    assert isinstance(model._conv3d_block, type(layer.Conv3dBlock(8)))
    assert isinstance(model._residual_block, type(layer.Residual3dBlock(8)))
    assert isinstance(model._deconv3d_block, type(layer.Deconv3dBlock(8)))
Exemplo n.º 9
0
    def __init__(
        self,
        image_size: tuple,
        out_channels: int,
        num_channel_initial: int,
        depth: int,
        out_kernel_initializer: str,
        out_activation: str,
        pooling: bool = True,
        concat_skip: bool = False,
        control_points: (tuple, None) = None,
        **kwargs,
    ):
        """
        Initialise UNet.

        :param image_size: tuple, (dim1, dim2, dim3), dims of input image.
        :param out_channels: int, number of channels for the output
        :param num_channel_initial: int, number of initial channels
        :param depth: int, input is at level 0, bottom is at level depth
        :param out_kernel_initializer: str, which kernel to use as initializer
        :param out_activation: str, activation at last layer
        :param pooling: Boolean, for downsampling, use non-parameterized
                        pooling if true, otherwise use conv3d
        :param concat_skip: Boolean, when upsampling, concatenate skipped
                            tensor if true, otherwise use addition
        :param control_points: (tuple, None), specify the distance between control points (in voxels).
        :param kwargs:
        """
        super(UNet, self).__init__(**kwargs)

        # init layer variables
        num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)]

        self._num_channel_initial = num_channel_initial
        self._depth = depth
        self._downsample_blocks = [
            layer.DownSampleResnetBlock(filters=num_channels[d], pooling=pooling)
            for d in range(depth)
        ]
        self._bottom_conv3d = layer.Conv3dBlock(filters=num_channels[depth])
        self._bottom_res3d = layer.Residual3dBlock(filters=num_channels[depth])
        self._upsample_blocks = [
            layer.UpSampleResnetBlock(filters=num_channels[d], concat=concat_skip)
            for d in range(depth)
        ]
        self._output_conv3d = layer.Conv3dWithResize(
            output_shape=image_size,
            filters=out_channels,
            kernel_initializer=out_kernel_initializer,
            activation=out_activation,
        )

        self.resize = (
            layer.ResizeCPTransform(control_points)
            if control_points is not None
            else False
        )
        self.interpolate = (
            layer.BSplines3DTransform(control_points, image_size)
            if control_points is not None
            else False
        )