Exemplo n.º 1
0
def test_build_conditional_model():
    """
    Testing that build_conditional_model function returns the tensors with correct shapes
    """
    moving_image_size = (1, 3, 5)
    fixed_image_size = (2, 4, 6)
    batch_size = 1

    model = build_conditional_model(
        moving_image_size=moving_image_size,
        fixed_image_size=fixed_image_size,
        index_size=1,
        labeled=True,
        batch_size=batch_size,
        train_config={
            "method": "conditional",
            "backbone": {
                "name": "local",
                "num_channel_initial": 4,
                "extract_levels": [1, 2, 3],
            },
            "loss": {
                "dissimilarity": {
                    "image": {
                        "name": "lncc",
                        "weight": 0.0
                    },
                    "label": {
                        "name": "multi_scale",
                        "weight": 1,
                        "multi_scale": {
                            "loss_type": "dice",
                            "loss_scales": [0, 1, 2, 4, 8, 16, 32],
                        },
                    },
                },
                "regularization": {
                    "weight": 0.5,
                    "energy_type": "bending"
                },
            },
        },
        registry=Registry(),
    )

    inputs = {
        "moving_image": tf.ones((batch_size, ) + moving_image_size),
        "fixed_image": tf.ones((batch_size, ) + fixed_image_size),
        "indices": 1,
        "moving_label": tf.ones((batch_size, ) + moving_image_size),
        "fixed_label": tf.ones((batch_size, ) + fixed_image_size),
    }
    outputs = model(inputs)

    expected_outputs_keys = ["pred_fixed_label"]
    assert all(keys in expected_outputs_keys for keys in outputs)
    assert outputs["pred_fixed_label"].shape == (
        batch_size, ) + fixed_image_size
Exemplo n.º 2
0
def build_model(
    moving_image_size: tuple,
    fixed_image_size: tuple,
    index_size: int,
    labeled: bool,
    batch_size: int,
    model_config: dict,
    loss_config: dict,
):
    """
    Parsing algorithm types to model building functions

    :param moving_image_size: [m_dim1, m_dim2, m_dim3]
    :param fixed_image_size: [f_dim1, f_dim2, f_dim3]
    :param index_size: dataset size
    :param labeled: true if the label of moving/fixed images are provided
    :param batch_size: mini-batch size
    :param model_config: model configuration, e.g. dictionary return from parser.yaml.load
    :param loss_config: loss configuration, e.g. dictionary return from parser.yaml.load
    :return: the built tf.keras.Model
    """
    if model_config["method"] in ["ddf", "dvf"]:
        return build_ddf_dvf_model(
            moving_image_size=moving_image_size,
            fixed_image_size=fixed_image_size,
            index_size=index_size,
            labeled=labeled,
            batch_size=batch_size,
            model_config=model_config,
            loss_config=loss_config,
        )
    elif model_config["method"] == "conditional":
        return build_conditional_model(
            moving_image_size=moving_image_size,
            fixed_image_size=fixed_image_size,
            index_size=index_size,
            labeled=labeled,
            batch_size=batch_size,
            model_config=model_config,
            loss_config=loss_config,
        )
    elif model_config["method"] == "affine":
        return build_affine_model(
            moving_image_size=moving_image_size,
            fixed_image_size=fixed_image_size,
            index_size=index_size,
            labeled=labeled,
            batch_size=batch_size,
            model_config=model_config,
            loss_config=loss_config,
        )
    else:
        raise ValueError("Unknown model method")
Exemplo n.º 3
0
def build_model(
    moving_image_size: tuple,
    fixed_image_size: tuple,
    index_size: int,
    labeled: bool,
    batch_size: int,
    train_config: dict,
    registry: Registry,
):
    """
    Parsing algorithm types to model building functions.

    :param moving_image_size: [m_dim1, m_dim2, m_dim3]
    :param fixed_image_size: [f_dim1, f_dim2, f_dim3]
    :param index_size: dataset size
    :param labeled: true if the label of moving/fixed images are provided
    :param batch_size: mini-batch size
    :param train_config: train configuration
    :return: the built tf.keras.Model
    """
    if train_config["method"] in ["ddf", "dvf"]:
        return build_ddf_dvf_model(
            moving_image_size=moving_image_size,
            fixed_image_size=fixed_image_size,
            index_size=index_size,
            labeled=labeled,
            batch_size=batch_size,
            train_config=train_config,
            registry=registry,
        )
    elif train_config["method"] == "conditional":
        return build_conditional_model(
            moving_image_size=moving_image_size,
            fixed_image_size=fixed_image_size,
            index_size=index_size,
            labeled=labeled,
            batch_size=batch_size,
            train_config=train_config,
            registry=registry,
        )
    elif train_config["method"] == "affine":
        return build_affine_model(
            moving_image_size=moving_image_size,
            fixed_image_size=fixed_image_size,
            index_size=index_size,
            labeled=labeled,
            batch_size=batch_size,
            train_config=train_config,
            registry=registry,
        )
    else:
        raise ValueError(f"Unknown method {train_config['method']}")