Exemplo n.º 1
0
    def __init__(self,
                 hidden_size,
                 expert,
                 num_experts=1,
                 k=1,
                 output_dropout_prob=0.0,
                 capacity_factor=1.,
                 eval_capacity_factor=1.,
                 min_capacity=4,
                 noisy_gate_policy: typing.Optional[str] = None):
        """Initialize an MoE layer.

        Arguments:
            hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.

            expert (torch.nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).

            num_experts (int, optional): default=1, the total number of experts per layer.

            k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.

            output_dropout_prob (float, optional): default=0.0, output dropout probability.

            capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.

            eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.

            min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.

            noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample' or 'None'.
        """

        super(MoE, self).__init__()

        assert groups.is_initialized(), \
            'Please call deepspeed.utils.groups.initialize() before using MoE layers'
        assert noisy_gate_policy is None or noisy_gate_policy in ['None', 'Jitter', 'RSample'], \
            'Unsupported noisy_gate_policy: ' + noisy_gate_policy

        num_local_experts = num_experts // groups.get_expert_parallel_world_size()

        log_dist(
            f'num_experts: {num_experts} | num_local_experts: {num_local_experts} | expert_parallel_size: {groups.get_expert_parallel_world_size()}',
            [0])

        self.num_experts = num_experts
        experts = Experts(expert, num_local_experts)
        self.deepspeed_moe = MOELayer(TopKGate(hidden_size,
                                               num_experts,
                                               k,
                                               capacity_factor,
                                               eval_capacity_factor,
                                               min_capacity,
                                               noisy_gate_policy),
                                      experts,
                                      num_local_experts,
                                      group=groups.get_expert_parallel_group())

        self.dropout = torch.nn.Dropout(output_dropout_prob)
Exemplo n.º 2
0
    def has_overflow(self, params, has_moe_params=None):
        if has_moe_params is None:
            has_moe_params = self.has_moe_params
        overflow = self.has_overflow_serial(params)
        # Since each model parallel GPU carries only part of the model,
        # make sure overflow flag is synced across all the model parallel GPUs
        overflow_gpu = torch.cuda.ByteTensor([overflow])
        # torch.distributed.all_reduce(overflow_gpu,
        #                             op=torch.distributed.ReduceOp.MAX,
        #                             group=mpu.get_model_parallel_group())
        if has_moe_params:
            # All reduce this across expert_parallel_group, so that if an expert
            # overflows, we detect it here
            dist.all_reduce(overflow_gpu,
                            op=dist.ReduceOp.MAX,
                            group=groups.get_expert_parallel_group())
        if self.zero_reduce_scatter:
            torch.distributed.all_reduce(overflow_gpu,
                                         op=torch.distributed.ReduceOp.MAX,
                                         group=torch.distributed.group.WORLD)
        elif self.mpu is not None:
            if self.deepspeed is not None:
                using_pipeline = hasattr(self.deepspeed,
                                         'pipeline_enable_backward_allreduce')
                if (using_pipeline
                        and self.deepspeed.pipeline_enable_backward_allreduce
                        is False) or (
                            not using_pipeline and
                            self.deepspeed.enable_backward_allreduce is False):
                    torch.distributed.all_reduce(
                        overflow_gpu,
                        op=torch.distributed.ReduceOp.MAX,
                        group=self.mpu.get_data_parallel_group())
            torch.distributed.all_reduce(
                overflow_gpu,
                op=torch.distributed.ReduceOp.MAX,
                group=self.mpu.get_model_parallel_group())
        elif self.deepspeed is not None and self.deepspeed.enable_backward_allreduce is False:
            torch.distributed.all_reduce(overflow_gpu,
                                         op=torch.distributed.ReduceOp.MAX,
                                         group=torch.distributed.group.WORLD)

        overflow = overflow_gpu[0].item()
        return bool(overflow)
Exemplo n.º 3
0
 def check_using_norm(self, norm_group, reduce_overflow=True):
     # TODO: I don't think reduce_overflow is needed if mpu is None
     overflow = -1 in norm_group
     overflow_gpu = torch.cuda.FloatTensor([overflow])
     if self.has_moe_params:
         # In this case, we need to do an all_reduce across
         # the expert_parallel_group, so that if there was
         # an overflow due to expert weights, we detect it
         dist.all_reduce(overflow_gpu,
                         op=dist.ReduceOp.MAX,
                         group=groups.get_expert_parallel_group())
     if self.mpu is not None:
         torch.distributed.all_reduce(overflow_gpu,
                                      op=torch.distributed.ReduceOp.MAX,
                                      group=self.mpu.get_model_parallel_group())
     elif reduce_overflow:
         dist.all_reduce(overflow_gpu, op=torch.distributed.ReduceOp.MAX)
         dist.barrier()
     overflow = overflow_gpu[0].item()
     return bool(overflow)
Exemplo n.º 4
0
    def __init__(self,
                 hidden_size,
                 expert,
                 num_experts=1,
                 k=1,
                 capacity_factor=1.,
                 eval_capacity_factor=1.,
                 min_capacity=4,
                 noisy_gate_policy: typing.Optional[str] = None,
                 drop_tokens: bool = True,
                 use_rts=True,
                 use_tutel: bool = False):
        """Initialize an MoE layer.

        Arguments:
            hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.

            expert (torch.nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).

            num_experts (int, optional): default=1, the total number of experts per layer.

            k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.

            capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.

            eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.

            min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.

            noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample' or 'None'.

            drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity).

            use_rts (bool, optional): default=True, whether to use Random Token Selection.

            use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed).
        """

        super(MoE, self).__init__()

        assert groups.is_initialized(), \
            'Please call deepspeed.utils.groups.initialize() before using MoE layers'
        assert noisy_gate_policy is None or noisy_gate_policy in ['None', 'Jitter', 'RSample'], \
            'Unsupported noisy_gate_policy: ' + noisy_gate_policy

        num_local_experts = num_experts // groups.get_expert_parallel_world_size(
        )

        log_dist(
            f'num_experts: {num_experts} | num_local_experts: {num_local_experts} | expert_parallel_size: {groups.get_expert_parallel_world_size()}',
            [0])

        self.num_experts = num_experts
        experts = Experts(expert, num_local_experts)
        self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k,
                                               capacity_factor,
                                               eval_capacity_factor,
                                               min_capacity, noisy_gate_policy,
                                               drop_tokens, use_rts),
                                      experts,
                                      num_local_experts,
                                      group=groups.get_expert_parallel_group(),
                                      use_tutel=use_tutel)