Exemplo n.º 1
0
def test_timeshifted_split_wrong_args():
    data = [
        np.zeros(shape=(100, 3), dtype=np.float32),
        np.zeros(shape=(10, 3), dtype=np.float32)
    ]
    with assert_raises(ValueError):  # negative chunksize
        list(timeshifted_split(data, lagtime=1, chunksize=-1))
    with assert_raises(ValueError):  # too long lagtime
        list(timeshifted_split(data, lagtime=15))
    with assert_raises(ValueError):  # too long lagtime
        list(timeshifted_split(data, lagtime=10))
    list(timeshifted_split(data, lagtime=9))  # sanity this should not raise
Exemplo n.º 2
0
def test_timeshifted_split_shuffle(lagtime, n_splits):
    x = np.arange(31, 5000)
    chunks = []
    chunks_lagged = []
    for chunk in timeshifted_split(x,
                                   lagtime=lagtime,
                                   n_splits=23,
                                   shuffle=True):
        if lagtime > 0:
            chunks.append(chunk[0])
            chunks_lagged.append(chunk[1])
        else:
            chunks.append(chunk)
            chunks_lagged.append(chunk)
    chunks = np.concatenate(chunks)
    chunks_lagged = np.concatenate(chunks_lagged)
    np.testing.assert_equal(len(chunks),
                            len(x) - lagtime)  # we lose lagtime many frames
    np.testing.assert_equal(len(chunks_lagged),
                            len(x) - lagtime)  # we lose lagtime many frames
    np.testing.assert_equal(
        chunks + lagtime,
        chunks_lagged)  # since data is sequential this must hold
    all_data = np.concatenate(
        (chunks, chunks_lagged
         ))  # check whether everything combined is the full dataset
    np.testing.assert_equal(len(np.setdiff1d(x, all_data)), 0)
Exemplo n.º 3
0
    def test_koopman_estimator_partial_fit(self):
        from deeptime.covariance import KoopmanWeightingEstimator
        est = KoopmanWeightingEstimator(lagtime=self.tau)
        est.lagtime = 1
        np.testing.assert_equal(est.lagtime, 1)
        est.lagtime = self.tau
        np.testing.assert_equal(est.lagtime, self.tau)

        data_lagged = timeshifted_split(self.data,
                                        lagtime=self.tau,
                                        n_splits=10)
        for traj in data_lagged:
            est.partial_fit(traj)
        m = est.fetch_model()

        np.testing.assert_allclose(m.weights_input,
                                   self.weight_obj.weights_input)
        np.testing.assert_allclose(m.const_weight_input,
                                   self.weight_obj.const_weight_input)

        # weights and transform are identical
        np.testing.assert_allclose(m.weights(self.data[0]),
                                   m.transform(self.data[0]))
        # dispatches to model
        np.testing.assert_allclose(m.weights(self.data[0]),
                                   est.transform(self.data[0]))
Exemplo n.º 4
0
 def setUpClass(cls):
     N_steps = 10000
     N_traj = 20
     lag = 1
     T = np.linalg.matrix_power(
         np.array([[0.7, 0.2, 0.1], [0.1, 0.8, 0.1], [0.1, 0.1, 0.8]]), lag)
     dtrajs = [generate(T, N_steps) for _ in range(N_traj)]
     p0 = np.zeros(3)
     p1 = np.zeros(3)
     trajs = []
     for dtraj in dtrajs:
         traj = np.zeros((N_steps, T.shape[0]))
         traj[np.arange(len(dtraj)), dtraj] = 1.0
         trajs.append(traj)
         p0 += traj[:-lag, :].sum(axis=0)
         p1 += traj[lag:, :].sum(axis=0)
     estimator = VAMP(scaling=None, var_cutoff=1.0)
     cov = VAMP.covariance_estimator(lagtime=lag).fit(trajs).fetch_model()
     vamp = estimator.fit(cov).fetch_model()
     msm = estimate_markov_model(dtrajs, lag=lag, reversible=False)
     cls.trajs = trajs
     cls.dtrajs = dtrajs
     cls.trajs_timeshifted = list(
         timeshifted_split(cls.trajs, lagtime=lag, chunksize=5000))
     cls.lag = lag
     cls.msm = msm
     cls.vamp = vamp
     cls.estimator = estimator
     cls.p0 = p0 / p0.sum()
     cls.p1 = p1 / p1.sum()
     cls.atol = np.finfo(np.float32).eps * 1000.0
Exemplo n.º 5
0
def test_dim_and_var_cutoff(full_rank_time_series, dim, var_cutoff,
                            partial_fit):
    traj, ds = full_rank_time_series
    # basically dim should be ignored here since var_cutoff takes precedence if it is None
    est = VAMP(lagtime=1, dim=dim, var_cutoff=var_cutoff)
    if partial_fit:
        for chunk in timeshifted_split(traj, lagtime=1, chunksize=15):
            est.partial_fit(chunk)
        est2 = VAMP(lagtime=1, dim=dim, var_cutoff=var_cutoff).fit(ds)
        np.testing.assert_array_almost_equal(
            est.fetch_model().operator, est2.fetch_model().operator,
            decimal=4)  # can fail on M$ with higher acc.
    else:
        est.fit(ds)
    projection = est.transform(traj)
    np.testing.assert_equal(projection.shape[0], traj.shape[0])
    if var_cutoff is not None:
        if var_cutoff == 1.:
            # data is internally mean-free
            np.testing.assert_equal(projection.shape[1], traj.shape[1] - 1)
        else:
            np.testing.assert_array_less(projection.shape[1], traj.shape[1])
    else:
        if dim is None:
            # data is internally mean-free
            np.testing.assert_equal(projection.shape[1], traj.shape[1] - 1)
        else:
            np.testing.assert_equal(projection.shape[1], dim)
Exemplo n.º 6
0
def test_timeshifted_split_nolag():
    x = np.arange(5000)
    splits = []
    for chunk in timeshifted_split(x, 0, n_splits=3):
        splits.append(chunk)

    np.testing.assert_equal(np.concatenate(splits), x)
    np.testing.assert_equal(len(splits), 3)
    for i in range(3):
        np.testing.assert_(len(splits[i]) > 0)
Exemplo n.º 7
0
def test_timeshifted_split_chunksize(data):
    chunks = []
    chunks_lagged = []
    for X, Y in timeshifted_split(data, lagtime=1, chunksize=2):
        chunks.append(X)
        chunks_lagged.append(Y)
        np.testing.assert_(0 < len(X) <= 2)
        np.testing.assert_(0 < len(Y) <= 2)
    np.testing.assert_equal(np.concatenate(chunks), data[:-1])
    np.testing.assert_equal(np.concatenate(chunks_lagged), data[1:])
Exemplo n.º 8
0
def test_timeshifed_split_nsplits(data):
    chunks = []
    chunks_lagged = []
    n = 0
    for X, Y in timeshifted_split(data, lagtime=1, n_splits=2):
        chunks.append(X)
        chunks_lagged.append(Y)
        n += 1
    np.testing.assert_equal(n, 2)
    np.testing.assert_equal(np.concatenate(chunks), data[:-1])
    np.testing.assert_equal(np.concatenate(chunks_lagged), data[1:])