Exemplo n.º 1
0
DEHB = dehbs[args.version]

# Initializing DEHB object
dehb = DEHB(cs=cs,
            dimensions=dimensions,
            f=f,
            strategy=args.strategy,
            mutation_factor=args.mutation_factor,
            crossover_prob=args.crossover_prob,
            eta=args.eta,
            min_budget=min_budget,
            max_budget=max_budget,
            generations=args.gens)

# Helper DE object for vector to config mapping
de = DE(cs=cs, b=b, f=f)

if args.runs is None:  # for a single run
    if not args.fix_seed:
        np.random.seed(0)
    # Running DE iterations
    traj, runtime, history = dehb.run(iterations=args.iter,
                                      verbose=args.verbose)
    valid_scores, test_scores = calc_regrets(history)

    save_json(valid_scores, test_scores, runtime, output_path, args.run_id)

else:  # for multiple runs
    for run_id, _ in enumerate(range(args.runs), start=args.run_start):
        if not args.fix_seed:
            np.random.seed(run_id)
Exemplo n.º 2
0
    'adult': (9, 243),
    'higgs': (9, 243),
    'letter': (3, 81),
    'mnist': (9, 243),
    'optdigits': (1, 27) ,
    'poker': (81, 2187),
}

min_budget, max_budget = budgets[args.dataset]

# Initializing DE object
if args. async is None:
    de = DE(cs=cs,
            dimensions=dimensions,
            f=f,
            pop_size=args.pop_size,
            mutation_factor=args.mutation_factor,
            crossover_prob=args.crossover_prob,
            strategy=args.strategy,
            budget=max_budget)
else:
    de = AsyncDE(cs=cs,
                 dimensions=dimensions,
                 f=f,
                 pop_size=args.pop_size,
                 mutation_factor=args.mutation_factor,
                 crossover_prob=args.crossover_prob,
                 strategy=args.strategy,
                 budget=max_budget,
                 async_strategy=args. async)

if args.runs is None:  # for a single run
Exemplo n.º 3
0
# Initializing DEHB object
dehb = DEHB(cs=cs,
            dimensions=dimensions,
            f=f,
            strategy=args.strategy,
            mutation_factor=args.mutation_factor,
            crossover_prob=args.crossover_prob,
            eta=args.eta,
            min_budget=min_budget,
            max_budget=max_budget,
            generations=args.gens)
# Initializing DE object
de = DE(cs=cs,
        dimensions=dimensions,
        f=f,
        pop_size=10,
        mutation_factor=args.mutation_factor,
        crossover_prob=args.crossover_prob,
        strategy=args.strategy,
        budget=args.max_budget)

if args.runs is None:  # for a single run
    if not args.fix_seed:
        np.random.seed(args.run_id)
    # Running DE iterations
    traj, runtime, history = dehb.run(iterations=args.iter,
                                      verbose=args.verbose)
    fh = open(os.path.join(output_path, 'run_{}.json'.format(args.run_id)),
              'w')
    json.dump(calc_test_scores(runtime, history), fh)
    fh.close()
else:  # for multiple runs