Exemplo n.º 1
0
def find_missing_bipartitions(reference_tree,
                              comparison_tree,
                              is_bipartitions_updated=False):
    """
    Returns a list of bipartitions that are in ``reference_tree``, but
    not in ``comparison_tree``.

    Trees need to share the same |TaxonNamespace| reference. The
    bipartition bitmasks of the trees must be correct for the current tree
    structures (by calling :meth:`Tree.encode_bipartitions()` method) or the
    ``is_bipartitions_updated`` argument must be |False| to force recalculation of
    bipartitions.

    Parameters
    ----------
    reference_tree : |Tree| object
        The first tree of the two trees being compared. This must share the
        same |TaxonNamespace| reference as ``tree2`` and must have
        bipartitions encoded.
    comparison_tree : |Tree| object
        The second tree of the two trees being compared. This must share the
        same |TaxonNamespace| reference as ``tree1`` and must have
        bipartitions encoded.
    is_bipartitions_updated : bool
        If |True|, then the bipartitions on *both* trees will be updated
        before comparison. If |False| (default) then the bipartitions
        will only be calculated for a |Tree| object if they have not been
        calculated before, either explicitly or implicitly.

    Returns
    -------
    s : list[|Bipartition|]
        A list of bipartitions that are in the first tree but not in the second.

    """
    missing = []
    if reference_tree.taxon_namespace is not comparison_tree.taxon_namespace:
        raise error.TaxonNamespaceIdentityError(reference_tree,
                                                comparison_tree)
    if not is_bipartitions_updated:
        reference_tree.encode_bipartitions()
        comparison_tree.encode_bipartitions()
    else:
        if reference_tree.bipartition_encoding is None:
            reference_tree.encode_bipartitions()
        if comparison_tree.bipartition_encoding is None:
            comparison_tree.encode_bipartitions()
    for bipartition in reference_tree.bipartition_encoding:
        if bipartition in comparison_tree.bipartition_encoding:
            pass
        else:
            missing.append(bipartition)
    return missing
Exemplo n.º 2
0
def mason_gamer_kellogg_score(tree1, tree2, is_bipartitions_updated=False):
    """
    Mason-Gamer and Kellogg. Testing for phylogenetic conflict among molecular
    data sets in the tribe Triticeae (Gramineae). Systematic Biology (1996)
    vol. 45 (4) pp. 524
    """
    if tree1.taxon_namespace is not tree2.taxon_namespace:
        raise error.TaxonNamespaceIdentityError(tree1, tree2)
    if not is_bipartitions_updated:
        tree1.encode_bipartitions()
        tree2.encode_bipartitions()
    else:
        if tree1.bipartition_encoding is None:
            tree1.encode_bipartitions()
        if tree2.bipartition_encoding is None:
            tree2.encode_bipartitions()
    se1 = tree1.bipartition_encoding
    se2 = tree2.bipartition_encoding
    bipartitions = sorted(list(set(se1.keys() + se2.keys())))
Exemplo n.º 3
0
def _get_length_diffs(tree1,
                      tree2,
                      edge_weight_attr="length",
                      value_type=float,
                      is_bipartitions_updated=False,
                      bipartition_length_diff_map=False):
    """
    Returns a list of tuples, with the first element of each tuple representing
    the length of the branch subtending a particular bipartition on ``tree1``, and
    the second element the length of the same branch on ``tree2``. If a
    particular bipartition is found on one tree but not in the other, a value of zero
    is used for the missing bipartition.
    """
    length_diffs = []
    bipartition_length_diffs = {}
    if tree1.taxon_namespace is not tree2.taxon_namespace:
        raise error.TaxonNamespaceIdentityError(tree1, tree2)
    if not is_bipartitions_updated:
        tree1.encode_bipartitions()
        tree2.encode_bipartitions()
    else:
        if tree1.bipartition_encoding is None:
            tree1.encode_bipartitions()
        if tree2.bipartition_encoding is None:
            tree2.encode_bipartitions()

    tree1_bipartition_edge_map = dict(
        tree2.bipartition_edge_map)  # O(n*(2*bind + dict_item_cost))
    tree2_bipartition_edge_map = tree1.bipartition_edge_map
    for bipartition in tree2_bipartition_edge_map:  # O n : 2*bind
        edge = tree2_bipartition_edge_map[bipartition]
        elen1 = getattr(edge, edge_weight_attr)  # attr + bind
        if elen1 is None:
            elen1 = 0  # worst-case: bind
        value1 = value_type(elen1)  #  ctor + bind
        try:
            e2 = tree1_bipartition_edge_map.pop(
                bipartition)  # attr + dict_lookup + bind
            elen2 = getattr(e2, edge_weight_attr)  # attr + bind
            if elen2 is None:
                # allow root edge to have bipartition with no value: raise error if not root edge
                if e2.tail_node is None:
                    elen2 = 0.0
                else:
                    raise ValueError(
                        "Edge length attribute is 'None': Tree: %s ('%s'), Split: %s"
                        % (id(tree2), tree2.label,
                           bipartition.leafset_as_newick_string(
                               tree2.taxon_namespace)))
        except KeyError:  # excep
            elen2 = 0.0
        value2 = value_type(elen2)  #  ctor + bind # best case
        # if abs(value2-value1) > 1e-5:
        #     print("{}: {}, {}".format(bipartition.leafset_as_newick_string(tree1.taxon_namespace), value2, value1))
        length_diffs.append((value1, value2))  # ctor + listappend
        bipartition_length_diffs[bipartition] = length_diffs[-1]

    for bipartition in tree1_bipartition_edge_map:  # best-case not executed, worst case O(n) : 2*bind
        edge = tree1_bipartition_edge_map[bipartition]
        elen2 = getattr(edge, edge_weight_attr)  # attr +  bind
        if elen2 is None:
            elen2 = 0
        value2 = value_type(elen2)  #  ctor + bind
        e1 = tree2_bipartition_edge_map.get(
            bipartition)  # attr + dict_lookup + bind
        if e1 is None:
            elen1 = 0.0
        else:
            elen1 = getattr(e1, edge_weight_attr)  # attr  + bind
            if elen1 is None:
                # allow root edge to have bipartition with no value: raise error if not root edge
                if e1.tail_node is None:
                    elen1 = 0.0
                else:
                    raise ValueError(
                        "Edge length attribute is 'None': Tree: %s ('%s'), Split: %s"
                        % (id(tree1), tree1.label, bipartition))
                #elen1 = 0
        value1 = value_type(elen1)
        length_diffs.append((value1, value2))  # ctor + listappend
        bipartition_length_diffs[bipartition] = length_diffs[-1]

    # the numbers below do not reflect additions to the code to protect against
    #   edges with length None
    # loops
    #  best-case:
    #   O(n * (dict_lookup + 3*attr + 3*ctor + 7*bind + listappend))
    #  worst-case:
    #     separated: O(n * (2*dict_lookup + 4*attr + 3*ctor + 8*bind + listappend + excep) + n*(2*dict_lookup + 4*attr + 3*ctor + 8*bind + listappend))
    #   or:
    #     O(2n*(2*dict_lookup + 4*attr + 3*ctor + 8*bind + listappend + 0.5*excep))

    # total
    #  best-case:
    #       O(n * (dict_lookup + 3*attr + 3*ctor + 8*bind + listappend + dict_item_cost))
    #  worst-case:
    #     O(2n*(2*dict_lookup + 4*attr + 3*ctor + 9*bind + listappend + 0.5*(dict_item_cost + excep))
    if bipartition_length_diff_map:
        return length_diffs, bipartition_length_diffs
    else:
        return length_diffs
Exemplo n.º 4
0
def false_positives_and_negatives(reference_tree,
                                  comparison_tree,
                                  is_bipartitions_updated=False):
    """
    Counts and returns number of false positive bipar (bipartitions found in
    ``comparison_tree`` but not in ``reference_tree``) and false negative
    bipartitions (bipartitions found in ``reference_tree`` but not in
    ``comparison_tree``).

    Trees need to share the same |TaxonNamespace| reference. The
    bipartition bitmasks of the trees must be correct for the current tree
    structures (by calling :meth:`Tree.encode_bipartitions()` method) or the
    ``is_bipartitions_updated`` argument must be |False| to force recalculation of
    bipartitions.

    Parameters
    ----------
    reference_tree : |Tree| object
        The first tree of the two trees being compared. This must share the
        same |TaxonNamespace| reference as ``tree2`` and must have
        bipartitions encoded.
    comparison_tree : |Tree| object
        The second tree of the two trees being compared. This must share the
        same |TaxonNamespace| reference as ``tree1`` and must have
        bipartitions encoded.
    is_bipartitions_updated : bool
        If |True|, then the bipartitions on *both* trees will be updated
        before comparison. If |False| (default) then the bipartitions
        will only be calculated for a |Tree| object if they have not been
        calculated before, either explicitly or implicitly.

    Returns
    -------
    t : tuple(int)
        A pair of integers, with first integer being the number of false
        positives and the second being the number of false negatives.

    Examples
    --------

    ::

        import dendropy
        from dendropy.calculate import treecompare
        tns = dendropy.TaxonNamespace()
        tree1 = tree.get_from_path(
                "t1.nex",
                "nexus",
                taxon_namespace=tns)
        tree2 = tree.get_from_path(
                "t2.nex",
                "nexus",
                taxon_namespace=tns)
        tree1.encode_bipartitions()
        tree2.encode_bipartitions()
        print(treecompare.false_positives_and_negatives(tree1, tree2))

    """
    if reference_tree.taxon_namespace is not comparison_tree.taxon_namespace:
        raise error.TaxonNamespaceIdentityError(reference_tree,
                                                comparison_tree)
    if not is_bipartitions_updated:
        reference_tree.encode_bipartitions()
        comparison_tree.encode_bipartitions()
    else:
        if reference_tree.bipartition_encoding is None:
            reference_tree.encode_bipartitions()
        if comparison_tree.bipartition_encoding is None:
            comparison_tree.encode_bipartitions()
    ref_bipartitions = set(reference_tree.bipartition_encoding)
    comparison_bipartitions = set(comparison_tree.bipartition_encoding)
    false_positives = ref_bipartitions.difference(comparison_bipartitions)
    false_negatives = comparison_bipartitions.difference(ref_bipartitions)
    return len(false_positives), len(false_negatives)