Exemplo n.º 1
0
def _get_model_config(config_file):
    cfg = get_cfg()
    add_densepose_config(cfg)
    cfg.merge_from_file(config_file)
    if not torch.cuda.is_available():
        cfg.MODEL_DEVICE = "cpu"
    return cfg
Exemplo n.º 2
0
def setup(args):
    # Regist own dataset.
    from detectron2.data.datasets import register_coco_instances
    folder_data = "/root/detectron2/MADS_data_train_test/80_20_tonghop"

    # train_data
    name = "mads_train"
    json_file = os.path.join(folder_data, "train.json")
    image_root = os.path.join(folder_data, "train", "images")

    # test data
    name_val = "mads_val"
    json_file_val = os.path.join(folder_data, "val.json")
    image_root_val = os.path.join(folder_data, "val", "images")

    # registr
    register_coco_instances(name, {}, json_file, image_root)
    register_coco_instances(name_val, {}, json_file_val, image_root_val)
    cfg = get_cfg()
    add_densepose_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    # Setup logger for "densepose" module
    setup_logger(output=cfg.OUTPUT_DIR,
                 distributed_rank=comm.get_rank(),
                 name="densepose")
    return cfg
 def __init__(self, config_path, model_path):
     cfg = get_cfg()
     add_densepose_config(cfg)
     cfg.merge_from_file(config_path)
     cfg.MODEL.WEIGHTS = model_path
     cfg.MODEL.DEVICE = 'cpu'
     cfg.freeze()
     super().__init__(cfg)
Exemplo n.º 4
0
def setup_config(config_fpath: str, model_fpath: str, args: dict):
    cfg = get_cfg()
    add_densepose_config(cfg)
    cfg.merge_from_file(config_fpath)
    cfg.merge_from_list(args['opts'])
    cfg.MODEL.WEIGHTS = model_fpath
    cfg.freeze()
    return cfg
Exemplo n.º 5
0
def setup(args):
    cfg = get_cfg()
    add_densepose_config(cfg)
    add_efficientnet_config(cfg)
    add_roi_shared_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    return cfg
Exemplo n.º 6
0
 def setup_config(cls: type, config_fpath: str, model_fpath: str,
                  args: argparse.Namespace, opts: List[str]):
     cfg = get_cfg()
     add_densepose_config(cfg)
     cfg.merge_from_file(config_fpath)
     if opts:
         cfg.merge_from_list(opts)
     cfg.MODEL.WEIGHTS = model_fpath
     cfg.freeze()
     return cfg
Exemplo n.º 7
0
def setup_config():
    cfg = get_cfg()
    add_densepose_config(cfg)
    cfg.merge_from_file(config_fpath)
    if opts:
        cfg.merge_from_list(opts)
    cfg.MODEL.WEIGHTS = model_fpath
    cfg.MODEL.DEVICE = 'cpu'
    cfg.freeze()
    return cfg
Exemplo n.º 8
0
def setup(args):
    cfg = get_cfg()
    add_densepose_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    # Setup logger for "densepose" module
    setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose")
    return cfg
Exemplo n.º 9
0
def get_model_config(config_file):
    """
    Load and return the configuration from the specified file (relative to the base configuration
    directory)
    """
    cfg = get_cfg()
    add_densepose_config(cfg)
    path = os.path.join(_get_base_config_dir(), config_file)
    cfg.merge_from_file(path)
    if not torch.cuda.is_available():
        cfg.MODEL_DEVICE = "cpu"
    return cfg
Exemplo n.º 10
0
def setup_config(config_fpath: str, model_fpath: str, opts: List[str]):
    opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST")
    opts.append(0.8)  # Min score
    cfg = get_cfg()
    add_densepose_config(cfg)
    add_hrnet_config(cfg)
    cfg.merge_from_file(config_fpath)
    if opts:
        cfg.merge_from_list(opts)
    cfg.MODEL.WEIGHTS = model_fpath
    cfg.freeze()
    return cfg
Exemplo n.º 11
0
def setup(args):
    cfg = get_cfg()

    add_densepose_config(cfg)
    add_efficientnet_config(cfg)
    add_roi_shared_config(cfg)

    cfg.merge_from_file(args.config_file)
    cfg.SOLVER.BASE_LR = 0.001  # Avoid NaNs. Not useful in this script anyway.
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    setup_logger(distributed_rank=comm.get_rank())
    return cfg
Exemplo n.º 12
0
def prepare_predictor(threshold=0.5):
    print('prepare predictor...')
    cfg = get_cfg()
    add_densepose_config(cfg)
    model_file = './projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml'
    model_weights = 'https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_s1x/165712116/model_final_844d15.pkl'
    cfg.merge_from_file(model_file)
    cfg.MODEL.WEIGHTS = model_weights
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold
    cfg.freeze()
    predictor = DefaultPredictor(cfg)
    # print(cfg.dump())

    return predictor
Exemplo n.º 13
0
 def __init__(self, configFile, poseModelFile, accuracyThreshold,numberGpus):
     cfg = get_cfg()
     add_densepose_config(cfg)
     cfg.merge_from_file(configFile)
     cfg.MODEL.WEIGHTS = poseModelFile
     cfg.freeze()
     self.cfg = cfg
     self.accuracyThreshold = accuracyThreshold
     mp.set_start_method("spawn", force=True)
     smp = mp.get_context("spawn")
     self.queues = [smp.Manager().list(), smp.Manager().list()]
     self.procs = []
     for i in range(numberGpus):
         cfgProc = cfg.clone()
         cfgProc.defrost()
         cfgProc.MODEL.DEVICE = "cuda:" + str(i)
         self.procs.append(PosePredictorMultiGPU.PredictWorker(cfgProc, self.queues[i], i, self.accuracyThreshold))
Exemplo n.º 14
0
 def _test_setup(self, config_file):
     cfg = get_cfg()
     add_densepose_config(cfg)
     cfg.merge_from_file(config_file)
     cfg.freeze()
     default_setup(cfg, {})
Exemplo n.º 15
0
                edges_x.append(i)
                edges_y.append(j)

    left = min(edges_x)  #左边界
    right = max(edges_x)  #右边界
    width = right - left  #宽度
    bottom = min(edges_y)  #底部
    top = max(edges_y)  #顶部
    height = top - bottom  #高度

    pre1_picture = img[left:left + width, bottom:bottom + height]  #图片截取
    return pre1_picture  #返回图片数据


cfg = get_cfg()
add_densepose_config(cfg)
cfg.merge_from_file(
    "~/detectron2-master/projects/Densepose/configs/densepose_rcnn_R_50_FPN_s1x.yaml"
)

cfg.MODEL.WEIGHTS = "~/detectron2-master/projects/Densepose/model_final_162be9.pkl"

cfg.freeze()
predictor = DefaultPredictor(cfg)

img = cv2.imread("~/signLanguageAssesment/data/1.jpg")

print(img.shape)

outputs = predictor(img)["instances"]
Exemplo n.º 16
0
    def __init__(
            self,
            model=MODELS["chimps"],
            model_cache_dir: Path = Path(".zamba_cache"),
            download_region=RegionEnum("us"),
    ):
        """Create a DensePoseManager object.

        Parameters
        ----------
        model : dict, optional (default MODELS['chimps'])
            A dictionary with the densepose model defintion like those defined in MODELS.
        """
        if not DENSEPOSE_AVAILABLE:
            raise ImportError(
                "Densepose not installed. See: https://zamba.drivendata.org/docs/stable/models/densepose/#installation"
            )

        # setup configuration for densepose
        self.cfg = get_cfg()
        add_densepose_config(self.cfg)

        self.cfg.merge_from_file(model["config"])

        if not (model_cache_dir / model["weights"]).exists():
            model_cache_dir.mkdir(parents=True, exist_ok=True)
            self.cfg.MODEL.WEIGHTS = download_weights(model["weights"],
                                                      model_cache_dir,
                                                      download_region)

        # automatically use CPU if no cuda available
        if not torch.cuda.is_available():
            self.cfg.MODEL.DEVICE = "cpu"

        self.cfg.freeze()

        logging.getLogger("fvcore").setLevel(
            "CRITICAL")  # silence noisy detectron2 logging
        # set up predictor with the configuration
        self.predictor = DefaultPredictor(self.cfg)

        # we have a specific texture atlas for chimps with relevant regions
        # labeled that we can use instead of the default segmentation
        self.visualizer = model["viz_class"](
            self.cfg,
            device=self.cfg.MODEL.DEVICE,
            **model.get("viz_class_kwargs", {}),
        )

        # set up utilities for use with visualizer
        self.vis_extractor = create_extractor(self.visualizer)
        self.vis_embedder = build_densepose_embedder(self.cfg)
        self.vis_class_to_mesh_name = get_class_to_mesh_name_mapping(self.cfg)
        self.vis_mesh_vertex_embeddings = {
            mesh_name: self.vis_embedder(mesh_name).to(self.cfg.MODEL.DEVICE)
            for mesh_name in self.vis_class_to_mesh_name.values()
            if self.vis_embedder.has_embeddings(mesh_name)
        }

        if "anatomy_color_mapping" in model:
            self.anatomy_color_mapping = pd.read_csv(
                model["anatomy_color_mapping"], index_col=0)
        else:
            self.anatomy_color_mapping = None