Exemplo n.º 1
0
    def test_entities_with_nesting_collapse(self):
        expected_tokens = [
            "Recurrence", "of", "$Bacteria$", "in", "Sardinia", ".", "From",
            "Oct.", "30", "to", "Nov.", "7", ",", "1979", ",", "10", "people",
            "in", "the", "Sardinian", "province", "of", "Cagliari", "had",
            "onset", "of", "bacteriologically", "confirmed", "$Bacteria$", "."
        ]
        expected_sentences = [Sentence(0, 6), Sentence(6, 30)]

        expected_entities = [
            Entity("T1", 2, 3, "Habitat"),
            Entity("T2", 2, 3, "Bacteria"),
            Entity("T3", 2, 3, "Bacteria"),
            Entity("T4", 4, 5, "Geographical"),
            Entity("T5", 16, 17, "Habitat"),
            Entity("T6", 16, 23, "Habitat"),
            Entity("T7", 19, 21, "Geographical"),
            Entity("T8", 22, 23, "Geographical"),
            Entity("T9", 28, 29, "Bacteria")
        ]

        expected_paragraphs = [Paragraph(0, 1), Paragraph(1, 2)]
        expected_relations = [
            Relation(expected_entities[0], expected_entities[1], "Lives_in"),
            Relation(expected_entities[8], expected_entities[6], "Lives_in")
        ]

        expected_doc = Document("_", expected_tokens, expected_sentences,
                                expected_paragraphs, expected_entities,
                                expected_relations)

        actual_doc = EntitiesCollapser({"Bacteria"}).transform(self.doc)
        self.assertEqual(expected_doc, actual_doc)
Exemplo n.º 2
0
    def test_collapsement_of_same_spans(self):
        tokens = ["Elon", "Musk", "is", "CEO", "of", "Tesla", "."]
        sentences = [Sentence(0, 7)]
        entities = [
            Entity("_", 0, 2, "ELON"),
            Entity("_", 0, 2, "MUSK"),
            Entity("_", 5, 6, "COMP"),
            Entity("_", 5, 6, "ORG")
        ]

        input_doc = Document("_", tokens, sentences, [], entities)

        expected_tokens = ["$ELON$", "is", "CEO", "of", "$COMP$", "."]
        expected_sentences = [Sentence(0, 6)]
        expected_entities = [
            Entity("_", 0, 1, "ELON"),
            Entity("_", 0, 1, "MUSK"),
            Entity("_", 4, 5, "COMP"),
            Entity("_", 4, 5, "ORG")
        ]

        expected_doc = Document("_", expected_tokens, expected_sentences, [],
                                expected_entities)

        actual_doc = EntitiesCollapser({"ELON", "COMP"}).transform(input_doc)
        self.assertEqual(expected_doc, actual_doc)
Exemplo n.º 3
0
    def test_inner_entities_collapse(self):
        expected_tokens = [
            "Recurrence", "of", "Pelecypod-associated", "cholera", "in",
            "$Geographical$", ".", "From", "Oct.", "30", "to", "Nov.", "7",
            ",", "1979", ",", "10", "people", "in", "the", "$Geographical$",
            "of", "$Geographical$", "had", "onset", "of", "bacteriologically",
            "confirmed", "cholera", "."
        ]
        expected_sentences = [Sentence(0, 7), Sentence(7, 30)]

        expected_entities = [
            Entity("T1", 2, 3, "Habitat"),
            Entity("T2", 2, 4, "Bacteria"),
            Entity("T3", 3, 4, "Bacteria"),
            Entity("T4", 5, 6, "Geographical"),
            Entity("T5", 17, 18, "Habitat"),
            Entity("T6", 17, 23, "Habitat"),
            Entity("T7", 20, 21, "Geographical"),
            Entity("T8", 22, 23, "Geographical"),
            Entity("T9", 28, 29, "Bacteria")
        ]

        expected_paragraphs = [Paragraph(0, 1), Paragraph(1, 2)]
        expected_relations = [
            Relation(expected_entities[0], expected_entities[1], "Lives_in"),
            Relation(expected_entities[8], expected_entities[6], "Lives_in")
        ]

        expected_doc = Document("_", expected_tokens, expected_sentences,
                                expected_paragraphs, expected_entities,
                                expected_relations)

        actual_doc = EntitiesCollapser({"Geographical"}).transform(self.doc)
        self.assertEqual(expected_doc, actual_doc)
Exemplo n.º 4
0
    def test_ne_extras_collapse(self):
        nes = SortedSpansSet([
            Entity("_", 0, 1, "left"),
            Entity("_", 2, 4, "same"),
            Entity("_", 3, 4, "include"),
            Entity("_", 5, 6, "same"),
            Entity("_", 15, 19, "intersect"),
            Entity("_", 17, 20, "include"),
            Entity("_", 22, 25, "intersect")
        ])

        expected_nes = SortedSpansSet([
            Entity("_", 0, 1, "left"),
            Entity("_", 2, 3, "same"),
            Entity("_", 2, 3, "include"),
            Entity("_", 4, 5, "same"),
            Entity("_", 14, 17, "intersect"),
            Entity("_", 16, 17, "include"),
            Entity("_", 16, 18, "intersect")
        ])

        input_doc = self.doc.with_additional_extras({"ne": nes})
        actual_doc = EntitiesCollapser({"Habitat", "Bacteria",
                                        "Geographical"}).transform(input_doc)
        actual_extras = actual_doc.extras
        self.assertDictEqual(actual_extras, {"ne": expected_nes})
Exemplo n.º 5
0
    def test_collapsing_with_ne(self):
        input_doc = self.doc.with_additional_extras({"ne": self.doc.entities})
        input_doc = input_doc.without_relations().without_entities()

        entities = SortedSpansSet([
            Entity("_", 0, 1, "left"),
            Entity("_", 2, 4, "same"),
            Entity("_", 3, 4, "include"),
            Entity("_", 5, 6, "same"),
            Entity("_", 15, 19, "intersect"),
            Entity("_", 17, 20, "include"),
            Entity("_", 22, 25, "intersect")
        ])

        input_doc = input_doc.with_entities(entities)

        expected_tokens = [
            "Recurrence", "of", "$Bacteria$", "in", "$Geographical$", ".",
            "From", "Oct.", "30", "to", "Nov.", "7", ",", "1979", ",", "10",
            "$Habitat$", "had", "onset", "of", "bacteriologically",
            "confirmed", "$Bacteria$", "."
        ]
        expected_sentences = [Sentence(0, 6), Sentence(6, 24)]
        expected_paragraphs = [Paragraph(0, 1), Paragraph(1, 2)]

        expected_nes = SortedSpansSet([
            Entity("T1", 2, 3, "Habitat"),
            Entity("T2", 2, 3, "Bacteria"),
            Entity("T3", 2, 3, "Bacteria"),
            Entity("T4", 4, 5, "Geographical"),
            Entity("T5", 16, 17, "Habitat"),
            Entity("T6", 16, 17, "Habitat"),
            Entity("T7", 16, 17, "Geographical"),
            Entity("T8", 16, 17, "Geographical"),
            Entity("T9", 22, 23, "Bacteria")
        ])

        expected_entities = SortedSpansSet([
            Entity("_", 0, 1, "left"),
            Entity("_", 2, 3, "same"),
            Entity("_", 2, 3, "include"),
            Entity("_", 4, 5, "same"),
            Entity("_", 14, 17, "intersect"),
            Entity("_", 16, 17, "include"),
            Entity("_", 16, 18, "intersect")
        ])

        expected_doc = Document("_",
                                expected_tokens,
                                expected_sentences,
                                expected_paragraphs,
                                expected_entities,
                                extras={"ne": expected_nes})

        actual_doc = EntitiesCollapser({"Habitat", "Bacteria", "Geographical"},
                                       True).transform(input_doc)
        self.assertEqual(expected_doc, actual_doc)
Exemplo n.º 6
0
 def __init__(self, props: dict):
     super().__init__(props)
     self.props = props
     self._syntactic_fc = SyntacticFeatureComputer(
         self.props.get('morph_feats_list', DEFAULT_FEATS_LIST))
     self._feature_computer = CompositeFeatureComputer(
         (self._syntactic_fc, EntityBasedFeatureComputer()))
     self._collapser = EntitiesCollapser(
         self.props.get("types_to_collapse", set()))
Exemplo n.º 7
0
def _collapser_from_props(props: dict, ne=False):
    if props:
        from derek.data.entities_collapser import EntitiesCollapser
        collapser = EntitiesCollapser.from_props({
            **props, "collapse_with_ne":
            ne
        })
        print(f"Using {collapser}")
        return [collapser]
    else:
        return []
Exemplo n.º 8
0
    def test_vectors_features_collapse(self):
        vectors = [np.array([1, 2])] * 7 + [np.array([3, 4])] * 24

        expected_vectors = \
            [np.array([1, 2])] * 2 + [np.array([0, 0]), np.array([1, 2]), np.array([0, 0]), np.array([1, 2])] + \
            [np.array([3, 4])] * 10 + [np.array([0, 0])] + [np.array([3, 4])] * 5 + [np.array([0, 0]), np.array([3, 4])]

        expected_tf = {"vectors": expected_vectors}
        input_doc = self.doc.with_additional_token_features(
            {"vectors": vectors})
        actual_doc = EntitiesCollapser({"Habitat", "Bacteria",
                                        "Geographical"}).transform(input_doc)
        actual_tf = actual_doc.token_features
        self.assertSetEqual(set(actual_tf.keys()), set(expected_tf.keys()))
        self.assertSequenceEqual([x.tolist() for x in actual_tf["vectors"]],
                                 [x.tolist() for x in expected_tf["vectors"]])
Exemplo n.º 9
0
    def test_feats_features_collapse(self):
        feats = [{
            "test_feat": "true"
        }, {}, {
            "yet": "1"
        }, {
            "another": "false"
        }, {}, {
            "test": "3"
        }, {
            "test": 4
        }, {}, {
            "yet": "3"
        }, {}, {}, {}, {
            "another": "true"
        }, {}, {}, {}, {
            "test": "4"
        }, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {
            "bacteria": "true"
        }, {
            "bacteria": "false"
        }]

        expected_feats = [{
            "test_feat": "true"
        }, {}, {}, {}, {}, {
            "test": 4
        }, {}, {
            "yet": "3"
        }, {}, {}, {}, {
            "another": "true"
        }, {}, {}, {}, {
            "test": "4"
        }, {}, {}, {}, {}, {}, {}, {}, {
            "bacteria": "false"
        }]

        expected_tf = {"feats": expected_feats}
        input_doc = self.doc.with_additional_token_features({"feats": feats})
        actual_doc = EntitiesCollapser({"Habitat", "Bacteria",
                                        "Geographical"}).transform(input_doc)
        actual_tf = actual_doc.token_features
        self.assertDictEqual(actual_tf, expected_tf)
Exemplo n.º 10
0
    def test_pos_features_collapse(self):
        pos = [
            "NNP", "IN", "NNP", "NN", "IN", "NNP", "DOT", "IN", "NNP", "OTHER",
            "OTHER", "NNP", "OTHER", "COMMA", "OTHER", "COMMA", "OTHER", "NNS",
            "IN", "DT", "JJ", "NN", "IN", "NNP", "VBD", "RB", "IN", "RB",
            "VBN", "NN", "DOT"
        ]

        expected_pos = [
            "NNP",
            "IN",
            "$Bacteria$",
            "IN",
            "$Geographical$",
            "DOT",
            "IN",
            "NNP",
            "OTHER",
            "OTHER",
            "NNP",
            "OTHER",
            "COMMA",
            "OTHER",
            "COMMA",
            "OTHER",
            "$Habitat$",
            "VBD",
            "RB",
            "IN",
            "RB",
            "VBN",
            "$Bacteria$",
            "DOT",
        ]

        expected_tf = {"pos": expected_pos}
        input_doc = self.doc.with_additional_token_features({"pos": pos})
        actual_doc = EntitiesCollapser({"Habitat", "Bacteria",
                                        "Geographical"}).transform(input_doc)
        actual_tf = actual_doc.token_features
        self.assertDictEqual(actual_tf, expected_tf)
Exemplo n.º 11
0
    def test_dt_features_collapse(self):
        dt_head_distances = [
            6, -1, 1, -2, -1, -1, 0, 2, -1, 0, -1, 1, -2, 11, 10, 9, 1, 7, -1,
            2, 1, -3, -1, -1, -12, -1, -1, 1, 1, -3, -6
        ]

        dt_labels = [
            "nsubj", "prep", "nn", "pobj", "prep", "pobj", "ROOT", "prep",
            "pobj", "ROOT", "dep", "nn", "dep", "punct", "dep", "punct",
            "amod", "nsubj", "prep", "det", "amod", "pobj", "prep", "pobj",
            "null", "advmod", "dep", "advmod", "amod", "pobj", "punct"
        ]

        expected_dt_head_distances = [
            6, -1, 0, -1, 0, 0, 2, -1, 0, -1, 1, -2, 11, 10, 9, 1, 0, -12, -1,
            -1, 1, 1, 0, -6
        ]
        expected_dt_labels = [
            "nsubj", "prep", "$Bacteria$", "prep", "$Geographical$", "ROOT",
            "prep", "pobj", "ROOT", "dep", "nn", "dep", "punct", "dep",
            "punct", "amod", "$Habitat$", "null", "advmod", "dep", "advmod",
            "amod", "$Bacteria$", "punct"
        ]

        expected_tf = {
            "dt_labels": expected_dt_labels,
            "dt_head_distances": expected_dt_head_distances
        }
        input_doc = self.doc.with_additional_token_features({
            "dt_head_distances":
            dt_head_distances,
            "dt_labels":
            dt_labels
        })
        actual_doc = EntitiesCollapser({"Habitat", "Bacteria",
                                        "Geographical"}).transform(input_doc)
        actual_tf = actual_doc.token_features
        self.assertDictEqual(actual_tf, expected_tf)
Exemplo n.º 12
0
    def train(self,
              docs: Iterable[Document],
              unlabeled_docs: Iterable[Document] = None,
              early_stopping_callback: Callable[[NETClassifier, int],
                                                bool] = lambda c, e: False):

        feature_computer = SyntacticFeatureComputer(
            self.props.get('morph_feats_list', DEFAULT_FEATS_LIST))

        if self.props.get("unify_similar_entities_types", False):
            grouper = chain_similar_entities
            get_bucket_for_sample = lambda s: int(s["chain_len"] == 1)
        else:
            grouper = chain_individual_entities
            get_bucket_for_sample = lambda s: s["seq_len"][0] // self.props[
                "batcher"]["bucket_length"]

        grouper_collapser = _GrouperCollapser(
            CoreferenceChainGrouper(grouper),
            EntitiesCollapser(self.props.get("types_to_collapse", set()),
                              collapse_with_ne=True))

        docs_groups = FuncIterable(lambda: map(
            itemgetter(0, 1),
            map(grouper_collapser.prepare_doc_with_collapsing, docs)))
        collapsed_docs = FuncIterable(lambda: map(itemgetter(0), docs_groups))
        precomputed_docs = FuncIterable(lambda: map(
            feature_computer.create_features_for_doc, collapsed_docs))
        groups = FuncIterable(lambda: map(itemgetter(1), docs_groups))

        char_padding_size = get_char_padding_size(self.props)
        feature_extractor, metas, token_meta = generate_feature_extractor(
            precomputed_docs, self.props, char_padding_size)
        feature_extractor = GroupingFeatureExtractor(
            feature_extractor, group_level_features=["labels_mask"])

        # reuse because this task is kinda unary rel-ext
        task_graph_meta = NETTaskGraphMeta("NET", self.props, metas,
                                           feature_extractor.get_labels_size(),
                                           True)
        # we have only one graph
        graph, = build_graphs_with_shared_encoder(
            self.props,
            token_meta, [build_task_graph_meta(task_graph_meta)],
            rank=3)

        init = tf.global_variables_initializer()
        self._session.run(init)

        samples = list(
            feature_extractor.extract_features_from_docs(
                precomputed_docs, groups))
        saver = tf.train.Saver(save_relative_paths=True)

        classifier = _Classifier(graph, feature_extractor, feature_computer,
                                 self._session, saver, grouper_collapser)

        batcher_factory = get_batcher_from_props(
            samples, self.props["batcher"],
            feature_extractor.get_padding_value_and_rank, True, True,
            get_bucket_for_sample)

        train_meta = TaskTrainMeta(
            "NET", graph, batcher_factory, {
                "learning_rate":
                get_decayed_lr(self.props["learning_rate"],
                               self.props.get("lr_decay", 0)),
                "dropout_rate":
                get_const_controller(self.props.get("dropout", 1.0))
            }, classifier, early_stopping_callback)

        train_for_samples(self._session, self.props["epoch"], [train_meta])