Exemplo n.º 1
0
def test_sparse_regression():
    """
    Test sparse regression

    """

    A, y, x_true = generate_sparse_system()

    # least squares solution
    xls = np.linalg.lstsq(A, y)[0]

    # helper function to test relative error
    def test_error(xhat):
        test_err = np.linalg.norm(xhat - x_true, 2)
        naive_err = np.linalg.norm(xls - x_true, 2)
        err_ratio = test_err / naive_err
        assert err_ratio <= 0.01

    # Proximal gradient descent and Accelerated proximal gradient descent
    for algorithm in ['sgd', 'nag']:

        # objective
        def f_df(x):
            err = A.dot(x) - y
            obj = 0.5 * np.linalg.norm(err) ** 2
            grad = A.T.dot(err)
            return obj, grad

        # optimizer
        opt = GradientDescent(xls, f_df, algorithm, {'lr': 5e-3}, proxop=sparse(10.0), rho=1.0)
        opt.run(maxiter=5000)

        # test
        test_error(opt.theta)
Exemplo n.º 2
0
    def train(self, l, method='normal'):
        k = 10
        kfolder = KFolder(self.D, k, normalize=True)
        self.X_train, self.Y_train = [], []
        self.X_test, self.Y_test, self.W = [], [], []
        for i in range(k):
            # Get data and labels at fold k
            X,Y = kfolder.training(i)

            # Solve for the vector of linear factors, W
            if method == 'normal':
                rsolver = RegressionSolver(X, Y)
                Wi = rsolver.solve(l)
            elif method == 'descent':
                gd = GradientDescent(X, Y)
                Wi = gd.linreg_stoch2()
            elif method == 'logistic':
                gd = GradientDescent(X, Y)
                Wi = gd.logreg_stoch()

            # Get the testing data
            Xi,Yi = kfolder.testing(i)

            # Store the results
            self.X_train.append(X), self.Y_train.append(Y)
            self.X_test.append(Xi), self.Y_test.append(Yi), self.W.append(Wi)
Exemplo n.º 3
0
 def train(self, l, method='normal'):
     if method == 'normal':
         rsolver = RegressionSolver(self.X_train, self.Y_train)
         self.W = rsolver.solve(l)
     elif method == 'descent':
         gd = GradientDescent(self.X_train, self.Y_train)
         self.W = gd.linreg_stoch1(r=1e-6)
Exemplo n.º 4
0
def test_lowrank_matrix_approx():
    """
    Test low rank matrix approximation

    """

    Xobs, Xtrue = generate_lowrank_matrix()

    # helper function to test relative error of given parameters
    def test_error(Xhat):
        test_err = np.linalg.norm(Xhat - Xtrue, 'fro')
        naive_err = np.linalg.norm(Xobs - Xtrue, 'fro')
        err_ratio = test_err / naive_err
        assert err_ratio <= 0.5

    # Proximal gradient descent and Accelerated proximal gradient descent
    for algorithm in ['sgd', 'nag']:

        # objective
        def f_df(X):
            grad = X - Xtrue
            obj = 0.5 * np.linalg.norm(grad.ravel()) ** 2
            return obj, grad

        # optimizer
        opt = GradientDescent(Xobs, f_df, algorithm, {'lr': 5e-3}, proxop=nucnorm(0.2), rho=1.0)
        opt.callbacks = []
        opt.run(maxiter=5000)

        # test
        test_error(opt.theta)
Exemplo n.º 5
0
def calculate():
    f = request.args.get('f')
    start_point = request.args.get('start_point')
    eps = request.args.get('eps')
    option = request.args.get('option')
    if start_point is not None:
        start_point = [float(x) for x in start_point.split()]
    if eps is not None:
        eps = float(eps)
    find_min = True
    if option == 'max':
        find_min = False
    descent = GradientDescent(f, start_point, eps, find_min)
    length = Diff.length(descent.get_start_point())
    diff_by_direction = descent.calculate_diff_by_direction(length)
    mess = 'not monotonically'
    if Diff.is_increasing(diff_by_direction):
        mess = 'monotonically increasing'
    if Diff.is_decreasing(diff_by_direction):
        mess = 'monotonically decreasing'
    res = descent.calculate()
    report = descent.get_report()
    return render_template('index.html',
                           descent=descent,
                           point=' '.join(map(str, descent.get_start_point())),
                           length=length,
                           diff_by_direction=diff_by_direction,
                           mess=mess,
                           report=report,
                           res='; '.join(map(str, res)))
Exemplo n.º 6
0
def test_quadratic_bowl():
    """
    Test optimization in a quadratic bowl
    """

    t = np.linspace(0, 2*np.pi, 100)
    tol = 1e-3

    theta_true = [np.sin(t), np.cos(t)]
    theta_init = [np.cos(t), np.sin(t)]

    def f_df(theta):
        obj = 0.5*(theta[0]-theta_true[0])**2 + 0.5*(theta[1]-theta_true[1])**2
        grad = [theta[0]-theta_true[0], theta[1]-theta_true[1]]
        return np.sum(obj), grad

    opt = GradientDescent(theta_init, f_df, sgd, {'lr': 1e-2})
    opt.run(maxiter=1e3)

    for theta in zip(opt.theta, theta_true):
        assert np.linalg.norm(theta[0] - theta[1]) <= tol
Exemplo n.º 7
0
def test_rosen(tol=1e-2):
    """Test minimization of the rosenbrock function"""

    # check that the gradient is zeros at the optimal point
    xstar = np.array([1, 1])
    assert np.all(rosenbrock(xstar)[1] == 0)

    # list of algorithms to test (and their parameters)
    algorithms = [('sgd', {'lr': 1e-3, 'momentum': 0.1}),
                  ('nag', {'lr': 1e-3}),
                  ('rmsprop', {'lr': 1e-3}),
                  ('adam', {'lr': 1e-3}),
                  ('sag', {'nterms': 2, 'lr': 2e-3})]

    # loop over algorithms
    for algorithm, options in algorithms:

        # initialize
        opt = GradientDescent(np.zeros(2), rosenbrock, algorithm, options)

        # run the optimization algorithm
        opt.run(maxiter=1e4)
        assert np.linalg.norm(opt.theta - xstar) <= tol
Exemplo n.º 8
0
from polluted import PollutedSpambase
from evaluator import Evaluator
from descent import GradientDescent

if __name__=="__main__":
    # Get data
    dataset = PollutedSpambase()
    train_data, train_labels = dataset.training()
    test_data, test_labels = dataset.testing()

    # Do Logistic Regression
    gd = GradientDescent(train_data, train_labels)
    # 200,000 iterations gives ~85% acc
    W = gd.logreg_stoch(it=200001)

    # Evaluate solution
    evaluator = Evaluator([test_data], [test_labels], [W])
    evaluator.accuracy()
Exemplo n.º 9
0
from polluted import PollutedSpambase
from evaluator import Evaluator
from descent import GradientDescent
import sys
import argparse

if __name__=="__main__":
    # Parse cmdline arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', help='Method of regularization. {lasso, ridge}')
    args = parser.parse_args(sys.argv[1:])

    # Get data
    dataset = PollutedSpambase()
    train_data, train_labels = dataset.training()
    test_data, test_labels = dataset.testing()

    # Do ridge regularization
    gd = GradientDescent(train_data, train_labels)
    W = gd.logreg_ridge_stoch(it=5000001)

    # Evaluate solution
    evaluator = Evaluator([test_data], [test_labels], [W])
    evaluator.accuracy()