Exemplo n.º 1
0
def get_posterior(z, t0, lc, seed, temp_dir, interped):
    my_model = PerfectRedshift([lc], [z], t0, name="posterior%d" % seed)
    sampler = EnsembleSampler(temp_dir=temp_dir, num_burn=500, num_steps=1500)
    c = my_model.fit(sampler)
    chain = c.chains[-1]
    parameters = c.parameters[-1]

    chain, parameters = add_mu_to_chain(interped, chain, parameters)
    return chain, parameters
Exemplo n.º 2
0
def get_posterior(z, t0, lc, seed, temp_dir, interped, special):
    my_model = PerfectRedshift([lc], [z], t0, name="posterior%d" % seed)
    num_steps = 1500
    if special:
        num_steps *= 10
    sampler = EnsembleSampler(temp_dir=temp_dir, num_burn=500, num_steps=num_steps)
    c = my_model.fit(sampler)
    chain = c.chains[-1]
    parameters = c.parameters[-1]

    chain, parameters = add_mu_to_chain(interped, chain, parameters)
    # for i in range(chain.shape[1]):
    #     print(parameters[i], skew(chain[:, i]), skewtest(chain[:, i]))
    return chain, parameters
Exemplo n.º 3
0
def random_obs(temp_dir, seed):
    np.random.seed(seed)
    interp = generate_and_return()
    x1 = np.random.normal()
    # colour = np.random.normal(scale=0.1)
    colour = 0
    x0 = 1e-5
    # t0 = np.random.uniform(low=1000, high=2000)
    t0 = 1000
    z = np.random.uniform(low=0.1, high=1.0)

    # deltat = np.random.uniform(low=-20, high=0)
    # num_obs = np.random.randint(low=10, high=40)
    num_obs = 20
    deltat = -35

    filename = temp_dir + "/save_%d.npy" % seed

    if not os.path.exists(filename):
        ts = np.arange(t0 + deltat, (t0 + deltat) + 5 * num_obs, 5)

        times = np.array([[t, t + 0.05, t + 0.1, t + 0.2] for t in ts]).flatten()
        bands = [b for t in ts for b in ["desg", "desr", "desi", "desz"]]
        gains = np.ones(times.shape)
        skynoise = np.random.uniform(low=20, high=800) * np.ones(times.shape)
        zp = 30 * np.ones(times.shape)
        zpsys = ["ab"] * times.size

        obs = Table({"time": times, "band": bands, "gain": gains, "skynoise": skynoise, "zp": zp, "zpsys": zpsys})
        model = sncosmo.Model(source="salt2")
        p = {"z": z, "t0": t0, "x0": x0, "x1": x1, "c": colour}
        model.set(z=z)
        print(seed, " Vals are ", p)
        lc = sncosmo.realize_lcs(obs, model, [p])[0]
        ston = (lc["flux"] / lc["fluxerr"]).max()

        model.set(t0=t0, x1=x1, c=colour, x0=x0)
        try:
            res, fitted_model = sncosmo.fit_lc(
                lc, model, ["t0", "x0", "x1", "c"], guess_amplitude=False, guess_t0=False
            )
        except ValueError:
            return np.nan, np.nan, x1, colour, num_obs, ston, deltat, z, 0

        fig = sncosmo.plot_lc(lc, model=fitted_model, errors=res.errors)
        fig.savefig(temp_dir + os.sep + "lc_%d.png" % seed, bbox_inches="tight", dpi=300)
        my_model = PerfectRedshift([lc], [z], t0, name="posterior%d" % seed)
        sampler = EnsembleSampler(temp_dir=temp_dir, num_burn=400, num_steps=1500)
        c = ChainConsumer()
        my_model.fit(sampler, chain_consumer=c)
        map = {"x0": "$x_0$", "x1": "$x_1$", "c": "$c$", "t0": "$t_0$"}
        parameters = [map[a] for a in res.vparam_names]

        mu1 = get_mu_from_chain(interped, c.chains[-1], c.parameters[-1])
        c.parameteers[-1].append(r"$\mu$")
        c.chains[-1] = np.hstack((c.chains[-1], mu1[:, None]))

        chain2 = np.random.multivariate_normal(res.parameters[1:], res.covariance, size=int(1e5))
        chain2 = np.hstack((chain2, get_mu_from_chain(interp, chain2, parameters)[:, None]))
        c.add_chain(chain2, parameters=parameters, name="Gaussian")
        figfilename = filename.replace(".npy", ".png")
        c.plot(filename=figfilename, truth={"$t_0$": t0, "$x_0$": x0, "$x_1$": x1, "$c$": colour})

        means = []
        stds = []
        isgood = (
            (np.abs(x1 - res.parameters[3]) < 4) & (np.abs(colour - res.parameters[4]) < 2) & (res.parameters[2] > 0.0)
        )
        isgood *= 1.0

        for i in range(len(c.chains)):
            a = c.chains[i][:, -1]
            means.append(a.mean())
            stds.append(np.std(a))
        diffmu = np.diff(means)[0]
        diffstd = np.diff(stds)[0]
        np.save(filename, np.array([diffmu, diffstd, ston, 1.0 * isgood]))

    else:
        vals = np.load(filename)
        diffmu = vals[0]
        diffstd = vals[1]
        ston = vals[2]
        isgood = vals[3]

    return diffmu, diffstd, x1, colour, num_obs, ston, deltat, z, isgood
Exemplo n.º 4
0
    model = sncosmo.Model(source='salt2-extended')
    p = {'z': z, 't0': t0, 'x0': x0, 'x1': x1, 'c': colour}
    model.set(z=z)
    print("Realise LCs")
    lcs = sncosmo.realize_lcs(obs, model, [p])
    print("Fit LCs")
    res, fitted_model = sncosmo.fit_lc(lcs[0], model, ['t0', 'x0', 'x1', 'c'])

    dir_name = os.path.dirname(__file__)
    temp_dir = dir_name + os.sep + "output"
    surface = temp_dir + os.sep + "surfaces_simple.png"
    mu_simple = temp_dir + os.sep + "mu_simple.png"
    mcmc_chain = temp_dir + os.sep + "mcmc_simple.npy"
    c = ChainConsumer()
    print("Fit model")
    my_model = PerfectRedshift(lcs, [z], t0, name="My posterior")
    sampler = EnsembleSampler(temp_dir=temp_dir, num_steps=20000)
    my_model.fit(sampler, chain_consumer=c)
    c.add_chain(np.random.multivariate_normal(res.parameters[1:], res.covariance, size=int(1e7)),
                name="Summary Stats", parameters=["$t_0$", "$x_0$", "$x_1$", "$c$"])

    if False:
        if not os.path.exists(mcmc_chain):
            res2, fitted_model2 = sncosmo.mcmc_lc(lcs[0], model, ['t0', 'x0', 'x1', 'c'], nwalkers=20,
                                                  nburn=500, nsamples=4000)
            mcchain = res2.samples
            np.save(mcmc_chain, mcchain)
        else:
            mcchain = np.load(mcmc_chain)
        c.add_chain(mcchain, name="sncosmo mcmc", parameters=["$t_0$", "$x_0$", "$x_1$", "$c$"])
    print("Plot surfaces")