def __init__(self):
        print("------- Initial E2E")
        self.image = np.empty((28, 28, 1))
        self.detectLP = detectNumberPlate()
        print("------- Loaded detectNumberPlate model")

        self.detect_vehicle = DetectVehicle(threshold=0.5)

        # self.recogChar = CNN_Model(trainable=False).model
        # self.recogChar.load_weights('./weights/original_weight.h5')
        # print ("------- Loaded recogChar model")
        self.candidates = []
        self.prev_candidates = dict()

        # print("------- Before load VehicleDetection")
        # self.vehicle_detection = VehicleDetection()
        # print("------- After load VehicleDetection")

        print("------- Before load LicensePlateDetection")
        self.license_plate_detection = LicensePlateDetection()
        print("------- After load LicensePlateDetection")

        print("------- Before load OCR")
        self.ocr = OCR(ocr_threshold=0.1)
        print("------- After load OCR")

        print("------- Before load GenOutput")
        self.gen_output = GenOutput()
        print("------- After load GenOutput")
 def __init__(self):
     self.image = np.empty((28, 28, 1))
     self.detectLP = detectNumberPlate()
     self.recogChar = CNN_Model(trainable=False).model
     self.recogChar.load_weights('./weights/weight.h5')
     self.candidates = []
     self.preLpCnt = None
Exemplo n.º 3
0
def save_a_img(link_img, output):
    model = detectNumberPlate()
    file_name = os.path.basename(link_img)
    img = cv2.imread(link_img)
    coordinates = model.detect(img)
    for coordinate in coordinates:
        pts = order_points(coordinate)
        ls_region = perspective.four_point_transform(img, pts)
        cv2.imwrite(os.path.join(output, file_name), ls_region)
        return ls_region
Exemplo n.º 4
0
def save_img(data_dir, output_dir):
    model = detectNumberPlate() #initizial class to detect image
    list_file = glob.glob(data_dir + "/*.jpg") #take list file
    for file in list_file: #take each file in list file
        file_name = os.path.basename(file) #name file match with list file original
        img = cv2.imread(file) #read file

        coordinates = model.detect(img) #detect file
        for coordinate in coordinates:  # detect license plate by yolov3
            # candidates = []
            # convert (x_min, y_min, width, height) to coordinate(top left, top right, bottom left, bottom right)
            pts = order_points(coordinate)
            # crop number plate used by bird's eyes view transformation
            lp_region = perspective.four_point_transform(img, pts)
            cv2.imwrite(os.path.join(output_dir, file_name), lp_region)