Exemplo n.º 1
0
    def supply_collate(self, batch):
        """
        args:
            batch - list of (tensor, label)

        reutrn:
            xs - a tensor of all examples in 'batch' after padding
            ys - a LongTensor of all labels in batch
        """
        data = []
        target = []
        bs = len(batch)
        for i in range(bs):
            try:
                data.append([process_data(np.array(batch[i][0]))])
                target.append(batch[i][1])
            except:
                while True:
                    try:
                        new_index = random.randint(0, len(self.dataset) - 1)
                        data.append([
                            process_data(np.array(self.dataset[new_index][0]))
                        ])
                        target.append(self.dataset[new_index][1])
                        break
                    except:
                        continue

        data = torch.FloatTensor(data).squeeze(1).permute(0, 3, 1, 2) / 255
        target = torch.LongTensor(target)
        #        print(data.shape, target.shape)
        assert len(data) == bs and len(target) == bs
        return [data, target]
Exemplo n.º 2
0
def my_collate_fn(batch):
    """
    detect_align data to form a batch
    """
    #    print(np.array(batch[0][0]).shape)
    data = [process_data(np.array(item[0]))
            for item in batch]  # No trans version
    #    data = [process_data((item[0]*255).permute(1,2,0).numpy().astype(np.uint8())) for item in batch]
    target = [item[1] for item in batch]
    data = torch.FloatTensor(data / 255).permute(0, 2, 3, 1)
    target = torch.LongTensor(target)
    return [data, target]
Exemplo n.º 3
0
from detect_align import process_data
from tqdm import tqdm
import threading

ori_datapath = '/media/a/HDD/Face_Proj/vgg_face_dataset/images'
new_datapath = '/media/a/HDD/Face_Proj/vgg_face_dataset/new_images'

files = os.listdir(ori_datapath)


def download_and_save(path, warped):
    cv2.imwrite(path, warped)


for i in tqdm(range(len(files))):
    file_name = files[i]
    if not os.path.exists(os.path.join(new_datapath, file_name)):
        os.makedirs(os.path.join(new_datapath, file_name))
    imgs = os.listdir(os.path.join(ori_datapath, file_name))
    for j in range(len(imgs)):
        img_name = os.path.join(ori_datapath, file_name, imgs[j])

        try:
            warped = process_data(cv2.imread(img_name))
            path = os.path.join(new_datapath, file_name, imgs[j])
            t = threading.Thread(target=download_and_save, args=(path, warped))
            t.start()
#            cv2.imwrite(, warped)
        except Exception as e:
            continue