Exemplo n.º 1
0
 def match_box_with_gt(self, boxes, iou_threshold):
     """
     Args:
         boxes: Nx4
     Returns:
         BoxProposals
     """
     if self.is_training:
         with tf.name_scope('match_box_with_gt_{}'.format(iou_threshold)):
             iou = pairwise_iou(
                 boxes, self.gt_boxes)  # NxM   # gt_boxes from datasets
             max_iou_per_box = tf.reduce_max(
                 iou, axis=1)  # N  # contain many zeros
             best_iou_ind = tf.argmax(
                 iou, axis=1
             )  # N # if all value is zeros,return the first indices
             labels_per_box = tf.gather(self.gt_labels, best_iou_ind)
             fg_mask = max_iou_per_box >= iou_threshold
             fg_inds_wrt_gt = tf.boolean_mask(
                 best_iou_ind, fg_mask)  # fg_boxes but not gt_boxes
             labels_per_box = tf.stop_gradient(labels_per_box *
                                               tf.to_int64(fg_mask))
             return BoxProposals(boxes, labels_per_box, fg_inds_wrt_gt,
                                 self.gt_boxes, self.gt_labels)
     else:
         return BoxProposals(boxes)
Exemplo n.º 2
0
 def match_box_with_gt(self, boxes, iou_threshold):
     """
     Args:
         boxes: Nx4
     Returns:
         BoxProposals
     """
     if self.is_training:
         with tf.name_scope('match_box_with_gt_{}'.format(iou_threshold)):
             iou = pairwise_iou(boxes, self.gt_boxes)  # NxM
             max_iou_per_box = tf.reduce_max(iou, axis=1)  # N
             best_iou_ind = tf.argmax(iou, axis=1)  # N
             labels_per_box = tf.gather(self.gt_labels, best_iou_ind)
             fg_mask = max_iou_per_box >= iou_threshold
             fg_inds_wrt_gt = tf.boolean_mask(best_iou_ind, fg_mask)
             labels_per_box = tf.stop_gradient(labels_per_box *
                                               tf.to_int64(fg_mask))
             return BoxProposals(boxes, labels_per_box, fg_inds_wrt_gt,
                                 self.gt_boxes, self.gt_labels)
     else:
         return BoxProposals(boxes)
Exemplo n.º 3
0
def sample_fast_rcnn_targets(boxes, gt_boxes, gt_labels):
    """
    Sample some ROIs from all proposals for training.
    #fg is guaranteed to be > 0, because grount truth boxes are added as RoIs.

    Args:
        boxes: nx4 region proposals, floatbox
        gt_boxes: mx4, floatbox ,from datasets
        gt_labels: m, int32  ,from datasets

    Returns:
        A BoxProposals instance.
        sampled_boxes: tx4 floatbox, the rois
        sampled_labels: t int64 labels, in [0, #class). Positive means foreground.
        fg_inds_wrt_gt: #fg indices, each in range [0, m-1].
            It contains the matching GT of each foreground roi.
    """
    iou = pairwise_iou(boxes, gt_boxes)  # nxm
    proposal_metrics(iou)

    # add ground truth as proposals as well
    boxes = tf.concat([boxes, gt_boxes], axis=0)  # (n+m) x 4
    iou = tf.concat([iou, tf.eye(tf.shape(gt_boxes)[0])],
                    axis=0)  # (n x m + m x m)  # OK

    # #proposal=n+m from now on

    def sample_fg_bg(iou):
        fg_mask = tf.reduce_max(iou, axis=1) >= cfg.FRCNN.FG_THRESH

        fg_inds = tf.reshape(tf.where(fg_mask),
                             [-1])  # 2-D call mask,1-D call indices
        num_fg = tf.minimum(int(cfg.FRCNN.BATCH_PER_IM * cfg.FRCNN.FG_RATIO),
                            tf.size(fg_inds),
                            name='num_fg')
        fg_inds = tf.random_shuffle(fg_inds)[:num_fg]

        bg_inds = tf.reshape(tf.where(tf.logical_not(fg_mask)), [-1])
        num_bg = tf.minimum(cfg.FRCNN.BATCH_PER_IM - num_fg,
                            tf.size(bg_inds),
                            name='num_bg')
        bg_inds = tf.random_shuffle(bg_inds)[:num_bg]

        add_moving_summary(num_fg, num_bg)  # ??
        return fg_inds, bg_inds  # len_fg + len_bg = m + n

    fg_inds, bg_inds = sample_fg_bg(iou)
    # fg,bg indices w.r.t proposals

    best_iou_ind = tf.argmax(
        iou, axis=1)  # #proposal, each in 0~m-1  because after shuffle # OK
    fg_inds_wrt_gt = tf.gather(best_iou_ind, fg_inds)  # best_fg_indices    m

    all_indices = tf.concat([fg_inds, bg_inds],
                            axis=0)  # indices w.r.t all n+m proposal boxes
    ret_boxes = tf.gather(boxes, all_indices)

    ret_labels = tf.concat([
        tf.gather(gt_labels, fg_inds_wrt_gt),
        tf.zeros_like(bg_inds, dtype=tf.int64)
    ],
                           axis=0)  # OK
    # stop the gradient -- they are meant to be training targets
    return BoxProposals(
        tf.stop_gradient(ret_boxes, name='sampled_proposal_boxes'),
        tf.stop_gradient(ret_labels, name='sampled_labels'),
        tf.stop_gradient(fg_inds_wrt_gt), gt_boxes, gt_labels)