def main():
    video = '../video/video4.mp4'

    if not path.exists(video):
        raise FileNotFoundError('Video does not exist')

    cap = cv2.VideoCapture(video)
    detector = Detectors()
    tracker = Tracker(60, 30, 100, True)

    while True:
        try:
            # Покадрово зчитуємо відео
            ret, frame = cap.read()

            # Виявляємо центроїди на зображенні
            centers = detector.detect(frame)

            if len(centers) > 0:
                # Відстежуємо об'єкт з допомогою фільтру Калмана
                tracker.update(centers)

            cv2.waitKey(50)
        except cv2.error:
            break

    cap.release()
    cv2.destroyAllWindows()
Exemplo n.º 2
0
def main():

    # Create opencv video capture object
    cap = cv2.VideoCapture('project2.avi')

    # Create Object Detector
    detector = Detectors()
    # Create Object Tracker
    tracker = Tracker(40, 8, 5, 100)

    # Variables initialization

    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]

    out = cv2.VideoWriter('Tracking2_wait8.avi',
                          cv2.VideoWriter_fourcc(*'DIVX'), 5, (200, 200))

    while (True):
        ret, frame = cap.read()
        if ret == True:
            centers = detector.Detect(frame)

            # If centroids are detected then track them
            if (len(centers) >= 0):
                # Track object using Kalman Filter
                tracker.Update(centers)
                # For identified object tracks draw tracking line
                # Use various colors to indicate different track_id
                for i in range(len(tracker.tracks)):
                    if (len(tracker.tracks[i].trace) > 1):
                        for j in range(len(tracker.tracks[i].trace) - 1):
                            # Draw trace line
                            x1 = tracker.tracks[i].trace[j][0][0]
                            y1 = tracker.tracks[i].trace[j][1][0]

                            x2 = tracker.tracks[i].trace[j + 1][0][0]
                            y2 = tracker.tracks[i].trace[j + 1][1][0]

                            clr = tracker.tracks[i].track_id % 9
                            cv2.line(frame, (int(x1), int(y1)),
                                     (int(x2), int(y2)), track_colors[clr], 2)

                # Display the resulting tracking frame
                cv2.imshow('Tracking', frame)
                cv2.waitKey(100)
                out.write(frame)

        else:
            break

    cap.release()
    cv2.destroyAllWindows()

    out.release()
Exemplo n.º 3
0
def run(config):
    seconds = 0
    phase_controller = Phase_controller(STEP_SIZE, GREEN_LIGHT_DUR,
                                        YELLOW_LIGHT_DUR)
    detectors = Detectors(phase_controller)
    traffic = Traffic_generator(STEP_SIZE)

    light_decision_system = config.factory(config.out_dir, detectors)

    #generators
    average_waiting_time = Average_waiting_time(config.out_dir)

    while seconds < SIMULATION_DURATION:
        # start = time.time()
        # while time.time() - start < TRAINING_DURATION:
        traci.simulationStep()
        traffic.next_step()
        phase_controller.simulation_step()
        seconds += STEP_SIZE
        detectors.update()

        if phase_controller.is_yellow() and phase_controller.is_end_of_yellow(
        ):  # transition from yellow to green
            average_waiting_time.record(seconds)

            light_decision_system.next_step()
            current_phase = light_decision_system.get_predicted_phase()
            phase_controller.set_phase(current_phase)

            detectors.num_passed_light = 0
        elif phase_controller.is_end_of_green():
            current_phase = phase_controller.get_phase()
            current_phase += 1
            phase_controller.set_phase(current_phase)

    traci.close()
    sys.stdout.flush()
Exemplo n.º 4
0
def main():
    video = 'video/video4.mp4'

    if not path.exists(video):
        raise FileNotFoundError('Video does not exist')

    cap = cv2.VideoCapture(video)
    detector = Detectors()
    tracker = Tracker(60, 30, 100, False)

    while True:
        try:
            ret, frame = cap.read()
            centers = detector.detect(frame)

            if len(centers) > 0:
                tracker.update(centers)

            cv2.waitKey(50)
        except cv2.error:
            break

    cap.release()
    cv2.destroyAllWindows()
Exemplo n.º 5
0
def main():
    """Main function for multi object tracking
    Usage:
        $ python2.7 objectTracking.py
    Pre-requisite:
        - Python2.7
        - Numpy
        - SciPy
        - Opencv 3.0 for Python
    Args:
        None
    Return:
        None
    """

    # Create opencv video capture object
    cap = cv2.VideoCapture('data/TrackingBugs.mp4')
    """
    Resolution: 596 x 336
    Frame rate: 30 fps
    """

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(30, 30, 10, 100)

    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False

    # Infinite loop to process video frames
    while (True):
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Skip initial frames that display logo
        if (skip_frame_count < 15):
            skip_frame_count += 1
            continue

        # Detect and return centeroids of the objects in the frame
        centers = detector.Detect(frame)

        # If centroids are detected then track them
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers)

            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                position = tracker.tracks[i].position()
                error = tracker.tracks[i].position_error()
                cv2.circle(frame, (position[0], position[1]), error,
                           (200, 200, 200), 2)

                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id % 9
                        cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)),
                                 track_colors[clr], 2)

            # Display the resulting tracking frame
            cv2.imshow('Tracking', frame)

        # Display the original frame
        cv2.imshow('Original', orig_frame)

        # Slower the FPS
        cv2.waitKey(1)

        # Check for key strokes
        k = cv2.waitKey(50) & 0xff
        if k == 27:  # 'esc' key has been pressed, exit program.
            break
        if k == 112:  # 'p' has been pressed. this will pause/resume the code.
            pause = not pause
            if (pause is True):
                print("Code is paused. Press 'p' to resume..")
                while (pause is True):
                    # stay in this loop until
                    key = cv2.waitKey(30) & 0xff
                    if key == 112:
                        pause = False
                        print("Resume code..!!")
                        break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Exemplo n.º 6
0
def main(tiffStep):
    """Main function for multi object tracking
    """
    #tiffStep = 512

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(200, 50, 25, 100)

    # Variables initialization
    pause = False
    track_colors = [random_color() for x in xrange(256)]
    # Infinite loop to process video frames
    stTmAv = time.time()
    outFName = imFolder + '_traced_0-' + str(tiffStep) + '.tiff'
    #memmap_image = tifffile.memmap(outFName, shape=(tiffStep, newx, newy, 3), dtype='uint8')
    imgs = np.zeros((tiffStep, newy, newx, 3), dtype=np.uint8)
    tTm = 0
    stTm = time.time()
    for fr in xrange(len(flyContours[0])):
        # Capture frame-by-frame
        frame = getBgSubIm((flyContours[0][fr], flyContours[1]))
        frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
        outFrame = cv2.cvtColor(flyContours[0][fr], cv2.COLOR_GRAY2BGR)

        # Detect and return centeroids of the objects in the frame
        centers = detector.DetectCM(frame)
        # If centroids are detected then track them
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers)

            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id

                        cv2.line(outFrame, (int(x1), int(y1)),
                                 (int(x2), int(y2)), track_colors[clr], 2)
                        cv2.circle(outFrame, (int(x2), int(y2)), 2,
                                   track_colors[clr], 2)
                        #cv2.circle(outFrame, (int(x1), int(y1)), 2, (255,25,255), 2)
                    cv2.circle(outFrame, (int(x2), int(y2)), 2,
                               track_colors[clr], 1)

            ## Display the resulting tracking frame
            #cv2.imshow('Tracking', outFrame)
            #cv2.waitKey(1)
            # outFName = imFolder+'_traced/'+flist[fr].split('/')[-1]
            # cv2.imwrite(outFName, outFrame)
            img = cv2.resize(outFrame, (newx, newy))
            imN = (fr % tiffStep)
            if (imN == 0 and fr > 0):
                outFName = imFolder + '_traced_' + str(
                    fr - tiffStep) + '-' + str(fr) + '.tiff'
                startNT(imageio.mimwrite, (outFName, imgs))
                imgs = np.zeros((tiffStep, newy, newx, 3), dtype=np.uint8)
                #memmap_image = tifffile.memmap(outFName, shape=(tiffStep, newx, newy, 3), dtype='uint8')
                #memmap_image[imN] = img
                tm = time.time()
                fps = (tiffStep / (tm - stTm))
                tTm += tm - stTm
                print('FPS: %0.3f (frame# %d)' % (fps, fr))
                stTm = tm
            #else:
            #    #print fr, imN
            imgs[imN] = img
    imageio.mimwrite(
        imFolder + '_traced_' + str(
            (fr / tiffStep) * tiffStep) + '-' + str(fr) + '.tiff', imgs[:imN])
    print('Tracking average FPS: %0.3f' % (float(fr) / (time.time() - stTmAv))
          )  #(1.0/(tm-stTm)))
    cv2.destroyAllWindows()
Exemplo n.º 7
0
def main():
    """Main function for multi object tracking
    Usage:
        $ python3.6.8 objectTracking.py
    Pre-requisite:
        - Python3.6.8
        - Numpy
        - SciPy
        - Opencv 4.1.0.25 for Python
    Args:
        None
    Return:
        None
    """

    # Create opencv video capture object
    directory = '1'
    count_start = 40
    ratio = 2 / 98
    count_end = count_start + 800

    cap = cv.VideoCapture("./video/data/"+directory+".avi")
    output_data = pd.DataFrame()                                          //读写csv
    # Create Object Detector
    detector = Detectors(mode=0)                                          //0-background subtraction using image  1-background online training

    # Create Object Tracker
    ang_mode = 1
    tracker = Tracker(dist_thresh = 200, ang_thresh=120, max_frames_to_skip=5, max_trace_length=3, trackIdCount=0,ang_mode=ang_mode)



    # Variables initialization
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255),
                    (255, 255, 0), (0, 255, 255), (255, 0, 255),
                    (235, 14, 192), (0, 69, 255), (0, 252, 100),
                    (58, 53, 159), (240, 94, 28), (145, 173, 112),
                    (0, 0, 0), (62, 129, 27), (129, 172, 93),
                    (81, 125, 34), (104, 163, 233), (45, 128, 199),
                    (0, 225, 34), (104, 0, 164), (45, 60, 0), (45, 0, 199),
                    (176, 224, 230), (65, 105, 225), (106, 90, 205), (135, 206, 235),
                    (56, 94, 15), (8, 46, 84), (127, 225, 222), (64, 24, 208),
                    (127, 225, 0), (61, 145, 64), (0, 201, 87), (34, 139, 34),
                    (124, 252, 0), (50, 205, 50), (189, 252, 201), (107, 142, 35),
                    (48, 128, 20), (255, 153, 18), (235, 142, 85), (255, 227, 132),
                    (218, 165, 205), (227, 168, 205), (255, 97, 0), (237, 145, 33)]*2
    //pause = False
    count = 0
    pd_index = 0

    # Infinite loop to process video frames
    while (True):
        count = count + 1
        # Capture frame-by-frame
        ret, frame = cap.read()
        # When everything done, release the capture
        if (frame is None):
            cap.release()
            cv.destroyAllWindows()
        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # If centroids are detected then track them
        if ( count_start < count < count_end):
            # Detect and return centeroids of the objects in the frame
            detections, _, _, _, _ = detector.Detect(frame)
            # Track object using Kalman Filter
            tracker.Update(detections)
            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            font = cv.FONT_HERSHEY_SIMPLEX
            
            blank = np.zeros_like(frame)
            blank += 255
            x_margin = blank.shape[1]
            y_margin = blank.shape[0]
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace)-1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j+1][0][0]
                        y2 = tracker.tracks[i].trace[j+1][1][0]
                        #clr = tracker.tracks[i].track_id % len(track_colors)
                        clr = i
                        cv.line(frame, (int(x1), int(y1)), (int(x2), int(y2)),
                                 track_colors[clr], 2)
                x3 = tracker.tracks[i].trace[-1][0][0]
                y3 = tracker.tracks[i].trace[-1][1][0]
                x3_r = x3
                y3_r = y3
                if x3 < 50:
                    x3 = 60
                if y3 < 50:
                    y3 = 50
                if x3 > x_margin-250:
                    x3 =x_margin-250
                
                x3 = int(x3)
                y3 = int(y3)
                len_x = len(str(int(x3_r * ratio)))
                len_y = len(str(int(y3_r * ratio)))
                len_deg = len(str(int(tracker.tracks[i].angles[-1])))
                str_x = str(x3_r * ratio)[:len_x + 2]
                str_y = str(y3_r * ratio)[:len_y + 2]
                str_deg = str(tracker.tracks[i].angles[-1])[:len_deg + 2] 

                #clr = tracker.tracks[i].track_id % len(track_colors)
                clr = tracker.tracks[i].track_id
                if tracker.tracks[i].b_detected[-1]:
                    frame = Draw_single(frame, tracker.tracks[i].trace_raw[-1], tracker.tracks[i].angles[-1], track_colors[clr], b_point=tracker.tracks[i].b_detected[-1],b_draw_ang = ang_mode)
                else:
                    frame = Draw_single(frame, tracker.tracks[i].position, tracker.tracks[i].angles[-1], track_colors[clr], b_point=tracker.tracks[i].b_detected[-1],b_draw_ang = ang_mode)
                
                frame = cv.putText(frame, "Fish" + str(clr) + ":", (int(x3) - 60, int(y3) - 20), font, 0.7, (215, 0, 0), 2)
                if ang_mode == 1:                                           
                    frame = cv.putText(frame, "(" + str_x + "mm," + str_y + "mm," + str_deg + "deg)", (int(x3) + 20, int(y3) - 20), font, 0.6, (0, 165, 255), 2)
                else:
                    frame = cv.putText(frame, "(" + str_x + "mm," + str_y + "mm)", (int(x3) + 20, int(y3) - 20), font, 0.6, (0, 165, 255), 2)
                
                blank = Draw_single(blank, tracker.tracks[i].trace[-1], tracker.tracks[i].angles[-1], track_colors[clr], dist=60, dist1=15, b_point=False)
                blank = cv.putText(blank, "Fish"+str(i)+":", (int(x3)-60, int(y3)-20), font, 0.7, (215, 0, 0), 2)                                           
                blank = cv.putText(blank, "(" + str_x + "mm," + str_y + "mm," + str_deg + "deg)", (int(x3) + 20, int(y3) - 20), font, 0.6, (0, 165, 255), 2)
                
                # frame = cv.putText(frame, "Fish"+str(i), (int(x3)-30, int(y3)-20), font, 0.7, (215, 0, 0), 2) 
            #write image
            # cv.imwrite("./output/new40/mask/" + str(count) + ".jpg", detector.fgmask)
            cv.imwrite("./output/"+directory+"/and/" + str(count) + ".jpg", detector.frame_and)
            cv.imwrite("./output/"+directory+"/illu/" + str(count) + ".jpg", blank)
            cv.imwrite("./output/"+directory+"/final/" + str(count) + ".jpg", frame)
            # cv.imwrite("./output/no text/" + str(count) + ".jpg", frame)

            frame = cv.putText(frame, str(count), (50, 50), font, 1, (0, 0, 255), 2)
            # Display the resulting tracking frame
            cv.namedWindow('Tracking',cv.WINDOW_NORMAL)
            cv.imshow('Tracking', frame)
            # cv.imshow('blank', blank)
            # cv.imshow('mask', detector.fgmask)
            # cv.imshow('and', detector.frame_and)
            cv.waitKey(1)
            #cv.imwrite("./output/" + "frame" + str(count) + ".jpg", frame)
            
            # write data 
            for i in range(len(tracker.tracks)):
                trace = np.array(tracker.tracks[i].trace_save).reshape(-1, 2)
                trace_x = trace[-1, 0]
                trace_y = trace[-1, 1]
                trace_raw = np.array(tracker.tracks[i].trace_raw).reshape(-1, 2)
                trace_raw_x = trace_raw[-1, 0]
                trace_raw_y = trace_raw[-1, 1]
                angle = np.array(tracker.tracks[i].angles)[-1]
                bendangle = np.array(tracker.tracks[i].bendangles)[-1]
                state = np.array(tracker.tracks[i].states)[-1]
                b_detected = np.array(tracker.tracks[i].b_detected)[-1]
                pd_frame = len(tracker.tracks[i].angles)
                t_id = tracker.tracks[i].track_id
                fish_dict = {"Position_x": trace_x,
                "Position_y": trace_y,
                "Detection_x": trace_raw_x,
                "Detection_y": trace_raw_y,
                "Orientation": angle,
                "Bendangles":bendangle,
                "State": state,
                "b_detected": b_detected,
                "Frame": pd_frame,
                "ID": t_id}
                fish_data = pd.DataFrame(fish_dict,index=[pd_index])
                pd_index += 1 
                output_data = pd.concat([output_data, fish_data])
            output_data.to_csv("./output/"+directory+"/data.csv")

        elif count > count_end:
            break
        else:
            pass
Exemplo n.º 8
0
    for n in range(size):
        for m in range(size):

            data = getDataForOneD(dataDate, near_detectors[n, m], start_time,
                                  end_time)

            ax = fig.add_subplot(gs[n, m])

            ax.set_xlim([start_time, end_time])
            ax.set_ylim([723, 745])

            if m != 0:
                ax.set_yticks([])
            if n != size - 1:
                ax.set_xticks([])

            ax.annotate(near_detectors[n, m], **anno_opts)
            ax.plot(data[0], data[1], lw=1, c='green')

    plt.show()


if __name__ == '__main__':

    # For testing purposes only
    date = DataDate('130511', Detectors())
    getDataForOneD(date, '1415', dt.datetime.strptime('10:00:00', '%H:%M:%S'),
                   dt.datetime.strptime('13:00:00', '%H:%M:%S'),
                   dt.datetime.strptime('12:20:00', '%H:%M:%S'))
Exemplo n.º 9
0
def task1_1(mogthr, inputpath, dataset):
    # Create opencv video capture object
    path = inputpath + 'in%06d.jpg'
    cap = cv2.VideoCapture(path)

    # Create Object Detector
    detector = Detectors(thr=mogthr, dataset=dataset)

    # Create Object Tracker
    if dataset == 'highway':
        tracker = Tracker(200, 0, 60, 100)  # Tracker(200, 0, 200, 100)
    elif dataset == 'traffic':
        tracker = Tracker(200, 0, 60, 100)  # Tracker(50, 0, 90, 100)
    elif dataset == 'ownhighway':
        tracker = Tracker(45, 0, 60, 100)  # Tracker(50, 0, 90, 100)
    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False

    if dataset == 'highway':
        pts1 = np.float32([[120, 100], [257, 100], [25, 200], [250, 200]])
    elif dataset == 'traffic':
        pts1 = np.float32([[0, 50], [160, 15], [110, 190], [320, 110]])
    elif dataset == 'ownhighway':
        pts1 = np.float32([[190, 100], [290, 100], [60, 200], [250, 200]])
    pts2 = np.float32([[0, 0], [320, 0], [0, 240], [320, 240]])

    M = cv2.getPerspectiveTransform(pts1, pts2)


    print M
    counter = 0
    # Infinite loop to process video frames
    while True:
        counter += 1
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Stop when no frame
        if frame is None:
            break

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Skip initial frames that display logo
        #if (skip_frame_count < 200):
        #    skip_frame_count += 1
        #    continue

        # Detect and return centeroids of the objects in the frame
        centers, xd, yd, wd, hd = detector.Detect(frame, counter)
        #print xd

        vel = []
        # If centroids are detected then track them
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers, dataset)



            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    vel = []
                    a=0
                    for j in range(5, len(tracker.tracks[i].trace) - 1):
                        a=a+1
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id % 9
                        cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), track_colors[clr], 2)
                        if dataset == 'highway':
                            if y1 > 100 and y2 < 200:
                                x1r, y1r, z1r = np.dot(M,[x1, y1, 1])
                                x2r, y2r, z2r = np.dot(M, [x2, y2, 1])
                                x1r, y1r = x1r/z1r, y1r/z1r
                                x2r, y2r = x2r / z2r, y2r / z2r
                                dist = np.float(
                                    np.sqrt(((int(x2r) - int(x1r)) ** 2) + ((int(y2r) - int(y1r)) ** 2))) * np.float(
                                    30) / 20 * np.float(24) / 5  # euclidean distance between two points
                                vel.append(dist)
                        if dataset == 'ownhighway':
                            if y1 > 100 and y2 < 200:
                                x1r, y1r, z1r = np.dot(M,[x1, y1, 1])
                                x2r, y2r, z2r = np.dot(M, [x2, y2, 1])
                                x1r, y1r = x1r/z1r, y1r/z1r
                                x2r, y2r = x2r / z2r, y2r / z2r


                                dist = np.float(
                                    np.sqrt(((int(x2r) - int(x1r)) ** 2) + ((int(y2r) - int(y1r)) ** 2))) * np.float(
                                    18) / 20 * np.float(24) / 5  # euclidean distance between two points
                                vel.append(dist)

                    if not vel == []:
                        #if i==1:
                        #print xd[i]#'value ' + xd[i] + ' value ' + yd[i]#+ ' frame '+frame+ ' vel ' +vel
                        # if dataset == 'ownhighway':
                        #     #if i==0:
                        #     print counter,i, xd,np.mean(vel)
                        #     if counter>0:
                        #         a=0
                        #
                        #
                        #     #if xd==[]
                        #     # if len(vel)<4: #and int(np.mean(vel))>100:
                        #     #     cv2.putText(frame, '  vel ' + str(int(np.mean(vel))), (int(xd[a]), int(yd[a] - 4)),
                        #     #             cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                        #     if len(vel)>3:# and int(np.mean(vel))>100:
                        #         cv2.putText(frame, '  vel ' + str(int(np.mean(vel[-3:-1]))), (int(xd[0]), int(yd[0])),
                        #                 cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                        #     #cv2.putText(frame, '  vel ' + str(int(np.mean(vel))), (int(xd[0]), int(yd[0] - 4)),
                        #     #    cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                        #     #print int(np.mean(vel)),i,j
                        if dataset == 'ownhighway':
                            #print i, xd
                            if len(vel)<10:
                                cv2.putText(frame, '  vel ' + str(int(np.mean(vel))), (int(xd[0]), int(yd[0] - 4)),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                            else:
                                cv2.putText(frame, '  vel ' + str(int(np.mean(vel[-10:-1]))), (int(xd[0]), int(yd[0] - 4)),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                        if dataset == 'highway':
                            #print i, xd
                            if len(vel)<20:
                                cv2.putText(frame, '  vel ' + str(int(np.mean(vel))), (int(xd[i]), int(yd[i] - 4)),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                            else:
                                cv2.putText(frame, '  vel ' + str(int(np.mean(vel[-20:-1]))), (int(xd[i]), int(yd[i] - 4)),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1, cv2.LINE_AA)
                            #print int(np.mean(vel)), i, j
                    # x1 = tracker.tracks[i].trace[-2][0][0]
                    # y1 = tracker.tracks[i].trace[-2][1][0]
                    # x2 = tracker.tracks[i].trace[-1][0][0]
                    # y2 = tracker.tracks[i].trace[-1][1][0]
                    # if dataset == 'highway':
                    #     if y1 > 100 and y2 < 200:
                    #         x1r, y1r, z1r = np.dot(M,[x1, y1, 1])
                    #         x2r, y2r, z2r = np.dot(M, [x2, y2, 1])
                    #         x1r, y1r = x1r/z1r, y1r/z1r
                    #         x2r, y2r = x2r / z2r, y2r / z2r
                    #
                    #
                    #
                    #
                    #         dist = np.float(np.sqrt(((int(x2r) - int(x1r))**2) + ((int(y2r) - int(y1r))**2))) * np.float(30)/20 * np.float(24)/5#euclidean distance between two points
                    #         vel.append(dist)
                    #         cv2.putText(frame, '  vel '+str(int(dist)), (int(xd[i]), int(yd[i]-4)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,255,0),1,cv2.LINE_AA)
                                #print (x1, x2, y1, y2, dist, i)

                                # x1r,y1r = M * [x1,y1,1]            #(x,y,1) = M * (xold,yold,1)
                                # x2r, y2r = M * [x2,y2,1]
                                #
                                # vel.append[j] = int(np.sqrt(((int(x2r) - int(x1r)) ** 2) + (
                                #     (int(y2r) - int(y1r)) ** 2))) * int(3/50) * int(24/5) #     * (m/pixel) * (frame/sec)    # euclidean distance between two points
                                #
                                # if len(vel[j] > 10):
                                #     return#velocity = np.mean(vel[j](i:i-10))                 #     * (m/pixel) * (frame/sec)

                                #print 'car '+ str(i) +' velocity '+ str(dist) #(x pixels every frame) -> * (m/pixel) * (frame/sec) = (m/sec)















        # Display homography
        dst = cv2.warpPerspective(frame, M, (320, 240))
        cv2.imshow('Homography', dst)
        cv2.imwrite('../week5/results/hom' + str(counter) + '.png', dst)

        # Display the resulting tracking frame


        cv2.imshow('Tracking', frame)
        cv2.imwrite('../week5/results/out' + str(counter) + '.png', frame)
        cv2.imwrite('out' + str(frame) + '.jpg',frame)
        # Display the original frame
        cv2.imshow('Original', orig_frame)

        # Slower the FPS
        cv2.waitKey(1)

        # Check for key strokes
        k = cv2.waitKey(1) & 0xff
        if k == 27:  # 'esc' key has been pressed, exit program.
            break
        if k == 112:  # 'p' has been pressed. this will pause/resume the code.
            pause = not pause
            if (pause is True):
                print("Code is paused. Press 'p' to resume..")
                while (pause is True):
                    # stay in this loop until
                    key = cv2.waitKey(30) & 0xff
                    if key == 112:
                        pause = False
                        print("Resume code..!!")
                        break


    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Exemplo n.º 10
0
            11: 'Could not find previous lv0: ',
            20: 'Could not make tempature rate: ',
            21: 'Could not find previous tempature: ',
        }
        warning = switcher.get(id) + comments + '\n'
        self.__warnings[id].append(warning)

        if ACTIVE_WARNINGS or id == 1:
            print(warning)

#%%

if __name__ == '__main__':

    # For testing purposes only
    day = DataDate(input('What date? '), Detectors())
    
    command_completer = WordCompleter(['exit', 'findRates', 'animate', 'loadRaw', 'save', 'clear', 'printl0', 'printNLDN', 'loadRaw TASD', 'loadRaw NLDN', 'findNLDNcoors'])
    
    while True:
        user_input = prompt(u'D> ',
                            history=FileHistory('history.txt'),
                            auto_suggest=AutoSuggestFromHistory(),
                            completer=command_completer
                            )
        
        if user_input == 'exit':
            break
        elif user_input == 'findRates':
            day.findRates()
        elif user_input == 'findNLDNcoors':
Exemplo n.º 11
0
def main():

    # Create opencv video capture object
    cap = cv2.VideoCapture('G:/cmu/colonoscopy/New folder/Cold.mp4')
    #cap = cv2.VideoCapture('G:/cmu/colonoscopy/imagemark/Color-Tracker-master/Retroflect-at-end.mp4')

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(160, 1000, 5, 100)

    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False
    num = 0
    frame_num = 0

    # Infinite loop to process video frames
    while (True):
        frame_num += 1
        print(frame_num)
        # Capture frame-by-frame
        ret, frame = cap.read()
        frame = frame[30:550, 400:930]
        #frame = frame[40:400,130:450]

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Skip initial frames that display logo
        if (skip_frame_count < 15):
            skip_frame_count += 1
            continue

        # Detect and return centeroids of the objects in the frame
        centers = detector.Detect1(orig_frame)

        # If centroids are detected then track them
        if (len(centers) > 0):
            text = 'Biopsy'
            cv2.putText(orig_frame,
                        text, (100, 100),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        1.0, (0, 0, 255),
                        2,
                        lineType=cv2.LINE_AA)
            # Track object using Kalman Filter
            tracker.Update(centers)

            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id % 9
                        cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)),
                                 track_colors[clr], 2)
            # Display the resulting tracking frame
            cv2.imshow('Tracking', frame)

        # Display the original frame
        cv2.imshow('Original', orig_frame)
        print(num)

        # Slower the FPS
        cv2.waitKey(20)

        # Check for key strokes
        k = cv2.waitKey(50) & 0xff
        if k == 27:  # 'esc' key has been pressed, exit program.
            break
        if k == 112:  # 'p' has been pressed. this will pause/resume the code.
            pause = not pause
            if (pause is True):
                print("Code is paused. Press 'p' to resume..")
                while (pause is True):
                    # stay in this loop until
                    key = cv2.waitKey(30) & 0xff
                    if key == 112:
                        pause = False
                        print("Resume code..!!")
                        break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
def Trace_tracking(images):
    """tracking mutiple traces"""

    #extract tfirst file name
    first_filename = os.path.splitext(images[0])[0]

    #extract first file index
    #first_number = int(filter(str.isdigit, first_filename))

    first_number = int(re.search(r'\d+', first_filename).group(0))

    #define trace result path
    outfile = save_path_track + str('{:04}'.format(first_number)) + '.txt'

    print(outfile)

    image_path = os.path.join(dir_path, images[0])

    #load image from image path
    frame = cv2.imread(image_path)

    #Determine the width and height from the first image
    height, width, channels = frame.shape
    length = len(images)

    print("Image sequence size: {0} {1} {2}\n".format(width, height, length))

    #Create Object Detector
    detector = Detectors()

    #detector = Root_Detectors(pattern_id)

    # Create Object Tracker, arguments:
    # dist_thresh, max_frames_to_skip, max_trace_length, trackIdCount
    #distance threshold. When exceeds the threshold, track will be deleted and new track is created
    tracker = Tracker(dist_thresh, max_frames_to_skip, max_trace_length,
                      trackIdCount)

    # Variables initialization
    skip_frame_count = 0

    #frame ID
    ID = 0

    #stem_track = np.zeros(3)

    #initilize parameters for record radius and center locations
    radius_track = []

    centers_track = []

    #Begin of process each image for tracking
    ###################################################################################
    # loop to process video frames
    for frame_ID, image in enumerate(images):

        # Capture frame-by-frame
        image_path = os.path.join(dir_path, image)

        #load image frame
        frame = cv2.imread(image_path)

        # exit the loop if reach the end frame
        if ID == len(images):
            print("End of frame sequence!")
            break

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        print("Processing frame {}...".format(frame_ID))

        # Detect and return centeroids of the objects in the frame
        (centers, radius_rec) = detector.Detect(frame, ID, radius_min,
                                                radius_max)

        # record radius and center locations
        radius_track.append(radius_rec)
        centers_track.append(centers)

        #centers, stem_center = detector.Detect_root(frame, ID, pattern_id, stem_track)

        #centers = detector.Detect_root_blob(frame, ID, pattern_id, stem_track)

        # If centroids are detected then track them
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers)

            print("Tracker size: {}...".format(len(tracker.tracks)))

    #End of process each image for tracking
    ###################################################################################

    radius_track = np.hstack(radius_track)

    coord_radius = []

    # combine x, y coordinates
    for i in range(0, len(centers_track)):
        for j in range(0, len(centers_track[i])):
            coord_radius.append(np.array(centers_track[i][j]))

    coord_radius = np.array(coord_radius)

    #start index value along Z axis
    offset = first_number

    # write output as txt file
    with open(outfile, 'w') as f:

        #loop all tracked objects
        for i in range(len(tracker.tracks)):

            if (len(tracker.tracks[i].trace) > 2):

                #accquire dimension of current tracker
                dim = len(tracker.tracks[i].trace)

                #extract point data from current tracker
                point = np.asarray(tracker.tracks[i].trace)

                #print(type(tracker.tracks[i].trace))

                # accquire shape of points
                nsamples, nx, ny = point.shape

                #reshape points
                point = point.reshape((nsamples, nx * ny))

                #extract x,y,z coordinates
                x = np.asarray(point[:, 0]).flatten()
                y = np.asarray(point[:, 1]).flatten()
                z = np.asarray(range(offset, dim + offset)).flatten()

                #curve fitting of xy trace in 2D space
                #popt, pcov = curve_fit(func, x, y)
                #y = func(x, *popt)

                #compute average radius
                avg_radius = center_radius(x, y, radius_track, coord_radius)

                #reshape radius array
                r = np.asarray(avg_radius * np.ones((len(x), 1))).flatten()

                #print("Average radius: {0} \n".format(avg_radius))

                # write out tracing trace result
                #if ( (len(x) == len(y) == len(z)) and (np.count_nonzero(x) == dim) and (np.count_nonzero(y) == dim) and sum(x) !=0 ):
                if ((len(x) == len(y) == len(z)) and sum(x) != 0):

                    # save trace points as txt file
                    f.write("#Trace {0} \n".format(i))
                    np.savetxt(f, np.c_[x, y, z, r], fmt='%-7.2f')

                #else:
                #print("Inconsistant length pf 3D array!")
                #ax.scatter(x, y, z, c = 'b', marker = 'o')
                #ax.plot(x, y, z, label='Tracking root trace')
                #f.write("#End\n")

        # write end mark and close file
        f.write("#End\n")
        f.close()
Exemplo n.º 13
0
def main():
    # Create opencv video capture object
    cap = cv2.VideoCapture('/home/deepak/innovation_lab_files/vid1_new.mp4')

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(160, 30, 5, 100)

    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False
    # Infinite loop to process video frames
    mainlist = [[None, None]] * 1000
    CarCount = 0
    NoneCarCount = 0
    NoneVehicle = 0
    while (True):
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Skip initial frames that display logo
        if (skip_frame_count < 15):
            skip_frame_count += 1
            continue

        # Detect and return centeroids of the objects in the frame
        centers = detector.Detect(frame)
        newcenter = []
        # If centroids are detected then track them
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers)
            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            # print(len(tracker.tracks))
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 4):
                    # print(tracker.tracks[i].trace)
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id % 9
                        cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)),
                                 track_colors[clr], 2)
                    cv2.putText(frame, str(tracker.tracks[i].track_id),
                                (int(x1), int(y1)), cv2.FONT_HERSHEY_SIMPLEX,
                                0.75, (0, 0, 255), 2)
                    newcenter.append(
                        [int(x1), int(y1), tracker.tracks[i].track_id])

            # Display the resulting tracking frame
            # cv2.line(frame,(0,0),(100,100),(22,122,222),8)
            cv2.line(frame, (200, 600), (960, 600), (139, 0, 0), 8)
            cv2.putText(frame, 'Car Count =' + str(CarCount), (30, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.75, (92, 142, 215), 3)
            cv2.putText(frame, 'Non Car Count =' + str(NoneCarCount),
                        (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                        (92, 142, 215), 3)
            print(CarCount + NoneCarCount)
            # cv2.line(frame,(150,450),(280,370),(139,0,0),8)
            cv2.imshow('Tracking', frame)
        for j in range(len(centers)):
            for i in range(len(newcenter)):
                a = newcenter[i][0]
                b = newcenter[i][1]
                e = newcenter[i][2]
                c = centers[j][0][0]
                d = centers[j][1][0]
                temp_len = np.sqrt((a - c) * (a - c) + (b - d) * (b - d))

                if (temp_len < 7):
                    if (mainlist[e][0] != None):
                        c = mainlist[e][0]
                        d = mainlist[e][1]
                        if ((d <= 600) and (c >= 200) and (c <= 960)
                                and (a >= 200) and (a <= 960) and b >= 600):
                            CarCount += 1
                            s1 = orig_frame.shape[0]
                            s2 = orig_frame.shape[1]
                            # print('this')
                            # print(s1)
                            # print(s2)
                            # print(a)
                            # print(b)
                            # print('this')
                            # if((a-120>=0) and (a+120<=s2) and (b-120>=0) and (b+120<=s1)):
                            try:
                                img = orig_frame[a - 80:a + 80, b - 80:b + 80]
                                # cv2.imshow("cropped", img)
                                img = cv2.resize(img, (img_width, img_height))
                                arr = np.array(img).reshape(
                                    (3, img_width, img_height))
                                arr = np.expand_dims(arr, axis=0)
                                prediction = model.predict(arr)[0]
                                # print(prediction)
                                bestclass = ''
                                bestconf = -1
                                best = [
                                    'non-vehicle', 'vehicle', 'non-vehicle',
                                    'non-vehicle', 'non-vehicle',
                                    'non-vehicle', 'non-vehicle',
                                    'non-vehicle', 'non-vehicle', 'vehicle'
                                ]
                                for n in [0, 1, 2]:
                                    if (prediction[n] > bestconf):
                                        bestclass = n
                                        bestconf = prediction[n]
                                if (bestclass != 1 and bestclass != 9):
                                    NoneVehicle += 1
                                    if (NoneVehicle % 10 == 2):
                                        CarCount -= 1
                                        NoneCarCount += 1

                            # else :
                            except:
                                print('this is already vehicle')

                        mainlist[e][0] = a
                        mainlist[e][1] = b
                    else:
                        mainlist[e][0] = a
                        mainlist[e][1] = b
                    newcenter.pop(i)
                    break
        # for i in range(len(newcenter)):
        #     mainlist[newcenter[i][2]][0]=newcenter[i][0]
        #     mainlist[newcenter[i][2]][1]=newcenter[i][1]
        # Display the original frame
        # cv2.imshow('Original', orig_frame)

        # Slower the FPS
        cv2.waitKey(50)

        # Check for key strokes
        k = cv2.waitKey(50) & 0xff
        if k == 27:  # 'esc' key has been pressed, exit program.
            break
        if k == 112:  # 'p' has been pressed. this will pause/resume the code.
            pause = not pause
            if (pause is True):
                print("Code is paused. Press 'p' to resume..")
                while (pause is True):
                    # stay in this loop until
                    key = cv2.waitKey(30) & 0xff
                    if key == 112:
                        pause = False
                        print("Resume code..!!")
                        break

    # When everything done, release the capture
    print("this is final car count ")
    print(CarCount)
    cap.release()
    cv2.destroyAllWindows()
Exemplo n.º 14
0
def main():
    """Main function for multi object tracking
    Usage:
        $ python2.7 objectTracking.py
    Pre-requisite:
        - Python2.7
        - Numpy
        - SciPy
        - Opencv 3.0 for Python
    Args:
        None
    Return:
        None
    """

    # Create opencv video capture object
    cap = cv2.VideoCapture(
        'C:\Users\user\Documents\Iot-Tracking\CV2\kalman_filter_multi_object_tracking-master\data\RAW_ Moment van mows down pedestrians in Barcelona caught on camera (DISTURBING FOOTAGE).mp4'
    )
    #cap = cv2.VideoCapture(0)

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(160, 30, 5, 100)

    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False

    # Infinite loop to process video frames
    while (True):
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Skip initial frames that display logo
        if (skip_frame_count < 15):
            skip_frame_count += 1
            continue

        # Detect and return centeroids of the objects in the frame
        centers = detector.Detect(frame)

        # If centroids are detected then track them
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers)

            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id % 9
                        #cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), track_colors[clr], 2)

            # Display the resulting tracking frame
            cv2.imshow('Tracking', frame)

        # Display the original frame
        cv2.imshow('Original', orig_frame)

        # Slower the FPS
        cv2.waitKey(50)

        # Check for key strokes
        k = cv2.waitKey(1) & 0xff
        if k == ord("q"):  # 'esc' key has been pressed, exit program.
            break
        if k == ord(
                "p"):  # 'p' has been pressed. this will pause/resume the code.
            pause = not pause
            if (pause is True):
                print("Code is paused. Press 'p' to resume..")
                while (pause is True):
                    # stay in this loop until
                    key = cv2.waitKey(1) & 0xff
                    if key == 112:
                        pause = False
                        print("Resume code..!!")
                        break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Exemplo n.º 15
0
def main():
    # Create opencv video capture object
    # cap = cv2.VideoCapture('data/TrackingBugs.mp4')
    cap = cv2.VideoCapture('data/video_3_bin.mp4')

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(160, 30, 5, 100)

    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False

    frame_count = 1
    # Infinite loop to process video frames
    while True:
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Convert binary image to greyscale
        frame[frame != 0] = 255

        # Skip initial frames that display logo
        if skip_frame_count < 1:
            skip_frame_count += 1
            continue

        # Detect and return centroids of the objects in the frame
        if ret:
            print "Processing frame " + format(frame_count)
            frame_count += 1
            centers = detector.Detect(frame)

            # If centroids are detected then track them
            if len(centers) > 0:

                # Track object using Kalman Filter
                tracker.Update(centers)

                # For identified object tracks draw tracking line
                # Use various colors to indicate different track_id
                for i in range(len(tracker.tracks)):
                    if len(tracker.tracks[i].trace) > 1:
                        for j in range(len(tracker.tracks[i].trace) - 1):
                            # Draw trace line
                            x1 = tracker.tracks[i].trace[j][0][0]
                            y1 = tracker.tracks[i].trace[j][1][0]
                            x2 = tracker.tracks[i].trace[j + 1][0][0]
                            y2 = tracker.tracks[i].trace[j + 1][1][0]
                            clr = tracker.tracks[i].track_id % 9
                            cv2.line(frame, (int(x1), int(y1)),
                                     (int(x2), int(y2)), track_colors[clr], 2)

                # Display the resulting tracking frame
                cv2.imshow('Tracking', frame)

            # Display the original frame
            cv2.imshow('Original', orig_frame)

            # Slower the FPS
            cv2.waitKey(50)

            # # # Check for key strokes
            # k = cv2.waitKey(50) & 0xff
            # if k == 27:  # 'esc' key has been pressed, exit program.
            #     break
            # if k == 112:  # 'p' has been pressed. this will pause/resume the code.
            #     pause = not pause
            #     if pause is True:
            #         print "Code is paused. Press 'p' to resume.."
            #         while pause is True:
            #             # stay in this loop until
            #             key = cv2.waitKey(30) & 0xff
            #             if key == 112:
            #                 pause = False
            #                 print "Resume code..!!"
            #                 break
        else:
            print "All frames were processed"
            break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()