Exemplo n.º 1
0
def _prepare_blobs(im, pixel_means, target_size, max_size):
    """ Reference: blob.prep_im_for_blob() """

    im = im.astype(np.float32, copy=False)
    im -= pixel_means

    if cfg.SOBEL:
        ###### add by Xiaohang ########
        im /= np.array([[[57.375, 57.12, 58.395]]])
        im = sobel(im)
        ###############################

    im_shape = im.shape

    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im,
                    None,
                    None,
                    fx=im_scale,
                    fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)

    # Reuse code in blob_utils and fit FPN
    blob = blob_utils.im_list_to_blob([im])

    blobs = {}
    blobs["data"] = blob
    blobs["im_info"] = np.array([[blob.shape[2], blob.shape[3], im_scale]],
                                dtype=np.float32)
    return blobs
def _prepare_blobs(
    im,
    pixel_means,
    target_size,
    max_size,
):
    ''' Reference: blob.prep_im_for_blob() '''

    im = im.astype(np.float32, copy=False)
    im -= pixel_means
    im_shape = im.shape

    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)

    # Reuse code in blob_utils and fit FPN
    blob = blob_utils.im_list_to_blob([im])

    blobs = {}
    blobs['data'] = blob
    blobs['im_info'] = np.array(
        [[blob.shape[2], blob.shape[3], im_scale]],
        dtype=np.float32
    )
    return blobs
Exemplo n.º 3
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES), size=num_images
    )
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE
        )
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales
Exemplo n.º 4
0
def _prepare_blobs(
    im,
    pixel_means,
    target_size,
    max_size,
):
    ''' Reference: blob.prep_im_for_blob() '''

    im = im.astype(np.float32, copy=False)
    im -= pixel_means
    im_shape = im.shape

    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale,
                    interpolation=cv2.INTER_LINEAR)

    # Reuse code in blob_utils and fit FPN
    blob = blob_utils.im_list_to_blob([im])

    blobs = {}
    blobs['data'] = blob
    blobs['im_info'] = np.array(
        [[blob.shape[2], blob.shape[3], im_scale]],
        dtype=np.float32
    )
    return blobs
Exemplo n.º 5
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES), size=num_images
    )
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        logger.info(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE
        )
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)  # roidb是一个list数据,每一个元素是dict,获取roidb的数据个数,即样本数
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)  # 生成每一张对应的scale尺度的list
    processed_ims = []
    im_scales = []
    Gauss_kernel = 0
    SigmaX = 0
    alpha = 1
    beta = 0
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])  # 读取对应的数据图片
        if cfg.TRAIN.AUGUMENT:
            im_tmp = cv2.imread(roidb[i]['image'])
            random_flag = random.randint(0, 1)  # 随机进行高斯模糊
            #print(random_flag)
            if random_flag:
                Gauss_kernel = 7  #np.random.randint(5, 7)
                SigmaX = 5.5  #np.random.randint(0, 70) /10.0

                im = randomGaussian(im_tmp, Gauss_kernel, SigmaX)
                alpha = np.random.randint(0, 15) / 10.0
                beta = np.random.randint(0, 15)
                im = Contrast_and_Brightness(alpha, beta, im)
                #cv2.imwrite('test.jpg',im)
            else:
                im = im_tmp.copy()
        #print(random_flag,alpha,beta)
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:  # 如果flipped为真  则翻转数据
            im = im[:, ::-1, :]  # 第二个,前的-1表示对x轴的数据反向读取,即对图进行x轴的翻转
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(
            im, cfg.PIXEL_MEANS, target_size,
            cfg.TRAIN.MAX_SIZE)  # 会做一波预处理,resize为宽为600的图
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales
Exemplo n.º 7
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)

    angle = np.random.uniform(cfg.TRAIN.ROTATION_ANGLES[0],
                              cfg.TRAIN.ROTATION_ANGLES[1])
    shear = np.random.uniform(cfg.TRAIN.SHEAR_INT[0], cfg.TRAIN.SHEAR_INT[1])
    # zoom = np.random.uniform(cfg.TRAIN.ZOOM[0], cfg.TRAIN.ZOOM[1])
    channel_shift = np.random.uniform(cfg.TRAIN.CHANNEL_SHIFT[0],
                                      cfg.TRAIN.CHANNEL_SHIFT[1])

    processed_ims = []
    im_transformation_matrices = []
    im_shapes = []
    zooms = []
    im_scales = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['h_flipped'] and roidb[i]['v_flipped']:
            im = im[::-1, ::-1, :]
        elif roidb[i]['v_flipped']:
            im = im[::-1, :, :]
        elif roidb[i]['h_flipped']:
            im = im[:, ::-1, :]

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, transformation_matrix, im_shape, im_scale = blob_utils.prep_im_for_blob(
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE, angle, shear,
            channel_shift)
        im_transformation_matrices.append(transformation_matrix)
        im_shapes.append(im_shape)
        # zooms.append(zoom)
        processed_ims.append(im)
        im_scales.append(im_scale)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_transformation_matrices, im_shapes, im_scales
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        roi = roidb[i]
        im = cv2.imread(roi['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roi['image'])
        if roi['flipped']:
            im = im[:, ::-1, :]

        # added by Jerome
        h, w, _ = im.shape
        roi['width'] = w
        roi['height'] = h
        boxes = roi['boxes']
        # will be only true for live_targets:
        if cfg.TRAIN.DOMAIN_ADAPTATION:
            if len(boxes) == 1 and (boxes[0] == np.array(
                [0., 0., 0., 0.], dtype=np.float32)).all():
                roi['boxes'] = np.array(
                    [[w * .2, h * .2, w * .8, h * .8]], dtype=np.float32
                )  # to make sure enough (one or more) anchors are retained

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(im, cfg.PIXEL_MEANS,
                                                   target_size,
                                                   cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales
Exemplo n.º 9
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)
    processed_ims = []
    im_scales = []
    im_crops = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        # data augmentation
        # prefix = uuid.uuid1()
        # reid_roi_data.save_image(im, '{}_b'.format(prefix))
        im, im_crop = reid_roi_data.random_crop(im)
        im, im_crop2 = reid_roi_data.horizontal_crop(im)
        im_crop[2] = im_crop[2] - (im_crop[2] - im_crop[0] - im_crop2[2])
        im = reid_roi_data.hsv_jitter(im)
        im = reid_roi_data.gaussian_blur(im)
        im = reid_roi_data.random_erasing(im)
        # reid_roi_data.save_image(im, '{}_a'.format(prefix))

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(im, cfg.PIXEL_MEANS,
                                                   target_size,
                                                   cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        im_crops.append(im_crop)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales, im_crops
Exemplo n.º 10
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    #print("qwryyudfggjhgkjgk{}sdfgfdsg".format(roidb))
    # print("minibatch.py 118 此轮roidb的长度为:",len(roidb))
    # 获得数据的数量
    num_images = len(roidb)
    # 在这批数据中最XXXX的采样随机比例   (600,)这个的len()只是1 np.random.randint即在第一个参数和'high'值-1,的整数间生成list,list元素数量是roidb的数量
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES),
        size=num_images)  # 因为cfg.TRAIN.SCALES为(600,), 所以生成的是一个全为0的list
    processed_ims = []  # 图片数据的list
    im_scales = []  # 尺度比例list
    for i in range(num_images):
        #print("minibatch.py 109   @@@@@@@   roidb的boxes{}".format(roidb[i]['boxes']))
        try:
            im = cv2.imread(roidb[i]['image'])  # 读取roidb的图像数据
            #print("---这是此次的for循环的第{}/{}轮,图像为{}".format(i,num_images,roidb[i]['image']))
        except Exception as e:
            print("Exception:", e)
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])    # 如果图像不存在则assert
        if roidb[i]['flipped']:  # 如果图的flipped为翻转,则翻转
            im = im[:, ::-1, :]  # 对图像的宽做倒序  即x轴flipped
        # s_t1 = time.time()
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]  # target_size是600
        im, im_scale = blob_utils.prep_im_for_blob(  # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)  # 加入到im_scales的list中
        processed_ims.append(im)  # 加入到图像数据list中

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)
    #e_t1 = time.time()
    #t_t1 = e_t1 - s_t1
    #print("时间_最终:{}".format(t_t1))
    return blob, im_scales
Exemplo n.º 11
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)
    processed_ims = []
    im_scales = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        if roidb[i]['cropped'] != []:
            width = im.shape[1]
            height = im.shape[0]
            crop_size = cfg.TRAIN.CROPPED_SIZE
            crop_index = roidb[i]['cropped'].index(1)
            xmin = int(height / crop_size * int(round(crop_index / 2)))
            xmax = int(xmin + (height / crop_size))
            ymin = int(width / crop_size * int(round(crop_index / 2)))
            ymax = int(ymin + (width / crop_size))
            im = im[xmin:xmax, ymin:ymax, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(im, cfg.PIXEL_MEANS,
                                                   target_size,
                                                   cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales
Exemplo n.º 12
0
def _get_img_blob_mul(roidb):

    num_images = len(roidb)
    processed_img = []
    imgs_scale = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)
    all_roidb = []

    for i in range(num_images):
        img_path = roidb[i]['image']
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        # 如果图的flipped为翻转,则翻转
        if roidb[i]['flipped']:
            img = img[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
        im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(roidb[i])

        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了

        # print("copy图像时间:{}".format(t_t_))
        coor, new_boxes_crop, img_crop_w, img_crop_h, index_list = crop(
            h, w, roidb[i], WIDTH_REGION, HEIGHT_REGION)

        #  深拷贝以避免改变原始图像数据
        img_ = copy.deepcopy(img_[coor[0]:coor[1], coor[2]:coor[3]])
        cv2.imwrite("crop_image.jpg", img_)

        if not new_boxes_crop == []:
            new_roidb = creat_new_roidb(roidb[i], img_crop_w, img_crop_h,
                                        new_boxes_crop, index_list)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)

            time_start = time.time()
            if MASKRCNN_SWITCH:
                segms = []
                seg_areas = []
                #print("roidb:---------------------",new_roidb )
                if len(new_roidb['segms']) > 0:
                    for m_s, roi_s in enumerate(new_roidb['segms']):
                        roi_s = np.array(roi_s[0][:-4]).reshape(1, -1, 2)
                        img_se = np.zeros(
                            (roidb[i]['height'], roidb[i]['width'], 3))
                        img_se_ = img_se.copy()[coor[0]:coor[1],
                                                coor[2]:coor[3]]
                        imag = cv2.drawContours(img_se, [roi_s], -1,
                                                (255, 255, 255), -1)
                        #cv2.imwrite("mask_raw.jpg", imag)
                        imag = imag[coor[0]:coor[1], coor[2]:coor[3]]
                        cv2.imwrite("mask_single.jpg", imag)
                        imag = cv2.imread("mask_single.jpg")
                        gray = cv2.cvtColor(imag, cv2.COLOR_BGR2GRAY)
                        #  一定要做二值化,否则出来的是散点
                        ret, binary = cv2.threshold(gray, 127, 255,
                                                    cv2.THRESH_BINARY)
                        _, contours, hierarchy = cv2.findContours(
                            binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
                        #img_fill = cv2.drawContours(imag, contours,-1,(0,255,0),-1)
                        #cv2.imwrite("mask_single_fill.jpg", img_fill)
                        if len(contours) > 0:
                            #print("------------------contours:-----------------",contours)
                            for kk, con_point in enumerate(contours):
                                if con_point[0][0][0] == 0:
                                    con_point[0][0][0] = 1
                                elif con_point[0][0][0] == img_crop_w - 1:
                                    con_point[0][0][0] = img_crop_w - 2
                                else:
                                    pass
                                if con_point[0][0][1] == 0:
                                    con_point[0][0][1] = 1
                                elif con_point[0][0][1] == img_crop_h - 1:
                                    con_point[0][0][1] = img_crop_h - 2
                                else:
                                    pass
                            roi_s = list(np.array(contours).reshape(1, -1))
                            area = float(int(cv2.contourArea(contours[0])))
                            segms.append(list(roi_s))
                            seg_areas.append(area)
                            segms_ = []
                            # 验证mask框-----
                            # for rk, roi_k in enumerate(segms):
                            #     roi_k = np.array(roi_k).reshape(-1,1,2)
                            #     segms_.append(roi_k)
                            # #print("!!!!!points!!!!!!!",segms_)
                            # imag_ = cv2.drawContours(img_se_, segms_ ,-1,(255,255,255),-1)
                            # cv2.imwrite("maskrcnn_crop.jpg", imag_)

                    # ---------------------------------------------------------------------------------

                new_roidb['segms'] = list(segms)
                new_roidb['seg_areas'] = seg_areas

            time_end = time.time()
            time_used = time_end - time_start
            print("Maskrcnn 裁剪耗时{}".format(time_used))
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(new_roidb)

        else:

            roidb_copy = creat_new_roidb_empty(roidb[i], img_crop_w,
                                               img_crop_h)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)

            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)

    blob = blob_utils.im_list_to_blob(processed_img)

    return blob, imgs_scale, all_roidb
Exemplo n.º 13
0
def get_img_blob(roidb):
    num_images = len(roidb)

    processed_img = []
    imgs_scale = []
    roidb_base = {}
    all_roidb = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)

    for i in range(num_images):
        # print(i)
        roidb_copy = {}
        # print("minibatch.py  220 @@@@@@@roidb[boxes]{}".format(roidb[i]['boxes']))
        img_path = roidb[i][u'image']
        # print("minibatch.py  222  image:------------------",img_path)
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        if roidb[i]['flipped']:  # 如果图的flipped为翻转,则翻转
            img = img[:, ::-1, :]
        # img=np.array(img)

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]  # target_size是600
        im, imscale = blob_utils.prep_im_for_blob(  # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
            img, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(roidb[i])

        z = crop(h, w, roidb[i])
        coor, new_boxes_crop, new_classes_crop, img_crop_w, img_crop_h, index_list = z

        if not new_boxes_crop == []:
            # print("minibatch   237   ",index_list)
            gt_class = roidb[i]['gt_classes'][index_list]
            # print("minibatch   239   ",gt_class)
            gt_overlaps = roidb[i]['gt_overlaps'][index_list]
            max_overlaps = roidb[i]['max_overlaps'][
                index_list]  #np.max(gt_overlaps,axis=1)
            max_classes = roidb[i]['max_classes'][
                index_list]  #np.argmax(gt_overlaps,axis=1)

            roidb_copy = roidb[i]
            roidb_copy['boxes'] = np.array(new_boxes_crop, dtype=np.float32)
            roidb_copy[u'width'] = img_crop_w
            roidb_copy[u'height'] = img_crop_h
            roidb_copy['gt_classes'] = gt_class
            roidb_copy['gt_overlaps'] = gt_overlaps
            roidb_copy['is_crowd'] = roidb[i]['is_crowd'][index_list]
            roidb_copy['box_to_gt_ind_map'] = roidb[i]['box_to_gt_ind_map'][
                index_list]
            roidb_copy[u'max_classes'] = max_classes
            # print(roidb_copy[-1]['max_overlaps'])
            roidb_copy['max_overlaps'] = max_overlaps
            # m=roidb_copy[-1]['max_overlaps']
            box_target = compute_bbox_regression_targets(roidb_copy)

            roidb_copy['bbox_target'] = box_target
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(
                img[coor[0]:coor[1], coor[2]:coor[3]], cfg.PIXEL_MEANS,
                target_size, cfg.TRAIN.MAX_SIZE)
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)
        else:
            roidb_copy = roidb[i]
            roidb_copy[u'width'] = img_crop_w
            roidb_copy[u'height'] = img_crop_h
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(
                img[coor[0]:coor[1], coor[2]:coor[3]], cfg.PIXEL_MEANS,
                target_size, cfg.TRAIN.MAX_SIZE)
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)
    # if not processed_img==[]:
    blob = blob_utils.im_list_to_blob(processed_img)
    # print(" minibatch  266 @@@@@@@imgs_scale{}, roidb[boxes]{}]".format(imgs_scale,all_roidb))
    return blob, imgs_scale, all_roidb
def _get_image_blob_s6(roidb, roidb_noclass1):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """

    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)
    processed_ims = []
    im_scales = []
    error_flag = [0, 0]

    for i in range(num_images):
        roidb_noclass = roidb_noclass1.copy()
        if roidb[i][u'image'].split('/')[-1] == u'test.jpg':  #test.jpg
            random_bbox = dict()
            random_bbox['kernel_size_x'] = int(WIDTH / 5)
            random_bbox['kernel_size_y'] = int(HEIGHT / 5)
            random_bbox['tl_x'] = 0
            random_bbox['tl_y'] = 0
            x0 = random_bbox['tl_x']
            x1 = random_bbox['tl_x'] + random_bbox['kernel_size_x']
            y0 = random_bbox['tl_y']
            y1 = random_bbox['tl_y'] + random_bbox['kernel_size_y']
            im = cv2.imread(roidb[i]['image'])[y0:y1, x0:x1]
            im = cv2.resize(im, (WIDTH, HEIGHT))
            # cv2.imwrite('/home/icubic/aa.png',im)
            error_flag[i] = 0
            roidb[i] = roidb_noclass.copy()
            roidb[i][u'height'] = HEIGHT
            roidb[i][u'width'] = WIDTH
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, im_scale = blob_utils.prep_im_for_blob(im, cfg.PIXEL_MEANS,
                                                       target_size,
                                                       cfg.TRAIN.MAX_SIZE)
            im_scales.append(im_scale)
            processed_ims.append(im)
        else:
            if 1:
                if len(roidb[i][u'boxes']) == 0:
                    #print('no bbox')
                    random_bbox = dict()
                    random_flag = random.randint(0, 1)
                    real_yuanlai_width = roidb[i][u'width'] * 1
                    real_yuanlai_height = roidb[i][u'height'] * 1
                    width_ratio = float(real_yuanlai_width) / WIDTH_FIX  #1024
                    height_after_ratio = int(
                        float(real_yuanlai_height) / width_ratio)
                    width_after_ratio = WIDTH_FIX  #1024
                    if 1:
                        if random_flag == 0:
                            #print(random_flag)
                            random_bbox['kernel_size_x'] = int(
                                float(width_after_ratio) /
                                5.0)  #int(WIDTH / 5.0)
                            random_bbox['kernel_size_y'] = int(
                                float(height_after_ratio) /
                                5.0)  #int(HEIGHT / 5.0)

                            random_X = width_after_ratio - random_bbox[
                                'kernel_size_x']
                            random_Y = height_after_ratio - random_bbox[
                                'kernel_size_y']
                            try:
                                random_bbox['tl_x'] = random.randint(
                                    0, random_X)
                                random_bbox['tl_y'] = random.randint(
                                    0, random_Y)
                            except:
                                print('aa')
                            x0 = random_bbox['tl_x']
                            x1 = random_bbox['tl_x'] + random_bbox[
                                'kernel_size_x']
                            y0 = random_bbox['tl_y']
                            y1 = random_bbox['tl_y'] + random_bbox[
                                'kernel_size_y']
                            im = cv2.imread(roidb[i][u'image'])
                            im = cv2.resize(
                                im,
                                (width_after_ratio, height_after_ratio))[y0:y1,
                                                                         x0:x1]
                            im = cv2.resize(im, (WIDTH, HEIGHT))
                            roidb[i] = roidb_noclass.copy()
                            roidb[i][u'height'] = HEIGHT
                            roidb[i][u'width'] = WIDTH
                        else:
                            #print(random_flag)
                            random_bbox['kernel_size_x'] = int(
                                float(width_after_ratio) / 1.0)
                            random_bbox['kernel_size_y'] = int(
                                float(height_after_ratio) / 1.0)

                            random_X = width_after_ratio - random_bbox[
                                'kernel_size_x']
                            random_Y = height_after_ratio - random_bbox[
                                'kernel_size_y']
                            random_bbox['tl_x'] = random.randint(0, random_X)
                            random_bbox['tl_y'] = random.randint(0, random_Y)
                            x0 = random_bbox['tl_x']
                            x1 = random_bbox['tl_x'] + random_bbox[
                                'kernel_size_x']
                            y0 = random_bbox['tl_y']
                            y1 = random_bbox['tl_y'] + random_bbox[
                                'kernel_size_y']
                            im = cv2.imread(roidb[i][u'image'])
                            im = cv2.resize(
                                im,
                                (width_after_ratio, height_after_ratio))[y0:y1,
                                                                         x0:x1]
                            im = cv2.resize(im, (WIDTH, HEIGHT))
                            roidb[i] = roidb_noclass.copy()
                            roidb[i][u'height'] = HEIGHT
                            roidb[i][u'width'] = WIDTH
                    else:
                        im = cv2.imread(roidb[i][u'image'])
                        im = cv2.resize(im, (WIDTH, HEIGHT))
                        roidb[i] = roidb_noclass.copy()
                        roidb[i][u'height'] = HEIGHT
                        roidb[i][u'width'] = WIDTH
                    # cv2.imwrite('/home/icubic/daily_work/circruit_model/tmp_images/aa.png',im)
                    assert im is not None, \
                        'Failed to read image \'{}\''.format(roidb[i]['image'])
                    if roidb[i][
                            'flipped']:  #for image flip background training
                        im = im[:, ::-1, :]
                    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
                    im, im_scale = blob_utils.prep_im_for_blob(
                        im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
                    im_scales.append(im_scale)
                    processed_ims.append(im)
                    continue
                #if len(roidb[i][u'boxes']==1):
                #    print('roidb=1')
                #if len(roidb[i][u'boxes']>1):
                #    print('roidb>1')
                real_yuanlai_width = roidb[i][u'width'] * 1
                real_yuanlai_height = roidb[i][u'height'] * 1
                width_ratio = float(real_yuanlai_width) / WIDTH_FIX
                height_after_ratio = int(
                    float(real_yuanlai_height) / width_ratio)
                width_after_ratio = WIDTH_FIX

                real_class = []  #roidb[i]['gt_classes'][0]
                num_real_class = len(roidb[i]['gt_classes'])

                random_bbox = dict()
                random_bbox['kernel_size_x'] = int(
                    float(width_after_ratio) / 5.0)  #int(WIDTH_FIX / 5)
                random_bbox['kernel_size_y'] = int(
                    float(height_after_ratio) / 5.0)  #int(WIDTH_FIX / 5)
                if 1:
                    w_tongji = 0
                    h_tongji = 0
                    for i_tongji, sub_boxes_tongji in enumerate(
                            roidb[i][u'boxes']):
                        crop_x0_tongji = int(sub_boxes_tongji[0] /
                                             real_yuanlai_width *
                                             width_after_ratio)
                        crop_y0_tongji = int(sub_boxes_tongji[1] /
                                             real_yuanlai_height *
                                             height_after_ratio)
                        crop_x1_tongji = int(sub_boxes_tongji[2] /
                                             real_yuanlai_width *
                                             width_after_ratio)
                        crop_y1_tongji = int(sub_boxes_tongji[3] /
                                             real_yuanlai_height *
                                             height_after_ratio)
                        w_tongji = crop_x1_tongji - crop_x0_tongji
                        h_tongji = crop_y1_tongji - crop_y0_tongji
                        if w_tongji > int(WIDTH_FIX / 5.0) or h_tongji > int(
                                WIDTH_FIX / 5.0):
                            random_bbox['kernel_size_x'] = int(
                                float(width_after_ratio) / 1.0)
                            random_bbox['kernel_size_y'] = int(
                                float(height_after_ratio) / 1.0)
                            break

                if random_bbox['kernel_size_x'] == int(WIDTH_FIX / 5.0):
                    random_X = width_after_ratio - random_bbox['kernel_size_x']
                    random_Y = height_after_ratio - random_bbox['kernel_size_y']
                    random_bbox['tl_x'] = random.randint(0, random_X)
                    random_bbox['tl_y'] = random.randint(0, random_Y)
                    x0 = random_bbox['tl_x']
                    x1 = random_bbox['tl_x'] + random_bbox['kernel_size_x']
                    y0 = random_bbox['tl_y']
                    y1 = random_bbox['tl_y'] + random_bbox['kernel_size_y']
                    try:
                        im = cv2.imread(roidb[i][u'image'])
                    except:
                        im = cv2.imread(roidb[i][u'image'])
                    im = cv2.resize(
                        im, (width_after_ratio, height_after_ratio))[y0:y1,
                                                                     x0:x1]
                    im = cv2.resize(im, (WIDTH, HEIGHT))
                    sum_inside_overlaps = 0
                    boxes_inside_overlaps = []

                    for i_roidb, sub_boxes in enumerate(roidb[i][u'boxes']):
                        crop_x0 = int(sub_boxes[0] / real_yuanlai_width *
                                      width_after_ratio)
                        crop_y0 = int(sub_boxes[1] / real_yuanlai_height *
                                      height_after_ratio)
                        crop_x1 = int(sub_boxes[2] / real_yuanlai_width *
                                      width_after_ratio)
                        crop_y1 = int(sub_boxes[3] / real_yuanlai_height *
                                      height_after_ratio)
                        #real_x0 = float(crop_x0 - x0)*1024/224  # float(crop_x0) / 1024 * 224
                        #real_y0 = float(crop_y0 - y0)*1024/224  # float(crop_y0) / 1024 * 224
                        #real_x1 = float(crop_x1 - x0)*1024/224  # float(crop_x1) / 1024 * 224
                        #real_y1 = float(crop_y1 - y0)*1024/224

                        overlaps_rate = solve_coincide(
                            (x0, y0, x1, y1),
                            (crop_x0, crop_y0, crop_x1, crop_y1))
                        if overlaps_rate > 0.9:
                            sum_inside_overlaps = sum_inside_overlaps + 1
                            #real_x0 = crop_x0 - x0  # float(crop_x0) / 1024 * 224
                            #real_y0 = crop_y0 - y0  # float(crop_y0) / 1024 * 224
                            #real_x1 = crop_x1 - x0  # float(crop_x1) / 1024 * 224
                            #real_y1 = crop_y1 - y0

                            real_x0 = float(crop_x0 - x0) * WIDTH / (
                                random_bbox['kernel_size_x']
                            )  # float(crop_x0) / 1024 * 224
                            real_y0 = float(crop_y0 - y0) * HEIGHT / (
                                random_bbox['kernel_size_y']
                            )  # float(crop_y0) / 1024 * 224
                            real_x1 = float(crop_x1 - x0) * WIDTH / (
                                random_bbox['kernel_size_x']
                            )  # float(crop_x1) / 1024 * 224
                            real_y1 = float(crop_y1 - y0) * HEIGHT / (
                                random_bbox['kernel_size_y'])
                            if real_x0 < 0:
                                real_x0 = 0
                            if real_x0 > WIDTH:
                                real_x0 = WIDTH

                            if real_x1 < 0:
                                real_x1 = 0
                            if real_x1 > WIDTH:
                                real_x1 = WIDTH

                            if real_y0 < 0:
                                real_y0 = 0
                            if real_y0 > HEIGHT:
                                real_y0 = HEIGHT

                            if real_y1 < 0:
                                real_y1 = 0
                            if real_y1 > HEIGHT:
                                real_y1 = HEIGHT
                            #cv2.rectangle(im, (int(real_x0), int(real_y0)), (int(real_x1), int(real_y1)), (0, 255, 255), 3)
                            #cv2.imwrite('/home/icubic/daily_work/code/Detectron/detectron/datasets/data/shanghai/aa.png',im)

                            boxes_inside_overlaps.append(
                                [real_x0, real_y0, real_x1, real_y1])
                            real_class.append(roidb[i]['gt_classes'][i_roidb])
                            #cv2.rectangle(im, (int(real_x0), int(real_y0)),
                            #(int(real_x1), int(real_y1)), (255, 0, 255))
                            #cv2.imwrite('/home/icubic/daily_work/code/circruit/new/result/uu.png', im)
                    #a = roidb[i]['gt_overlaps'].toarray()

                    if sum_inside_overlaps > 0:
                        num_valid_objs = sum_inside_overlaps * 1
                        boxes = np.zeros((num_valid_objs, 4), dtype=np.float32)
                        gt_classes = np.zeros((num_valid_objs), dtype=np.int32)
                        gt_overlaps = np.zeros((num_valid_objs, REAL_CLASS),
                                               dtype=np.float32)
                        box_to_gt_ind_map = np.zeros((num_valid_objs),
                                                     dtype=np.int32)
                        is_crowd = np.zeros((num_valid_objs), dtype=np.bool)
                        for ix in range(num_valid_objs):
                            gt_classes[ix] = real_class[ix]  #real_class*1
                            try:
                                gt_overlaps[ix, real_class] = 1.0
                            except:
                                print('error')
                            is_crowd[ix] = False
                            box_to_gt_ind_map[ix] = ix
                            for i_index in range(4):
                                boxes[ix, i_index] = boxes_inside_overlaps[ix][
                                    i_index]

                        #for ix in range(num_valid_objs):
                        #box_to_gt_ind_map[ix] = ix
                        #cls = real_class*1
                        roidb_noclass['boxes'] = np.append(
                            roidb_noclass['boxes'], boxes, axis=0)

                        roidb_noclass['gt_classes'] = np.append(
                            roidb_noclass['gt_classes'], gt_classes)
                        #mm = np.append(
                        #    roidb_noclass['gt_overlaps'].toarray(), gt_overlaps,axis=0)
                        roidb_noclass['gt_overlaps'] = np.append(
                            roidb_noclass['gt_overlaps'].toarray(),
                            gt_overlaps)
                        roidb_noclass['gt_overlaps'] = scipy.sparse.csr_matrix(
                            roidb_noclass['gt_overlaps'])
                        #mm = np.append(mm, gt_overlaps, axis=0)
                        #roidb_noclass['gt_overlaps'] = scipy.sparse.csr_matrix(mm)
                        roidb_noclass['is_crowd'] = np.append(
                            roidb_noclass['is_crowd'], is_crowd)
                        roidb_noclass['box_to_gt_ind_map'] = np.append(
                            roidb_noclass['box_to_gt_ind_map'],
                            box_to_gt_ind_map)

                        gt_overlaps = roidb_noclass['gt_overlaps'].toarray()
                        # max overlap with gt over classes (columns)
                        max_overlaps = gt_overlaps.max(axis=1)
                        # gt class that had the max overlap
                        max_classes = gt_overlaps.argmax(axis=1)
                        roidb_noclass['max_classes'] = max_classes
                        roidb_noclass['max_overlaps'] = max_overlaps
                        # sanity checks
                        # if max overlap is 0, the class must be background (class 0)
                        zero_inds = np.where(max_overlaps == 0)[0]
                        assert all(max_classes[zero_inds] == 0)
                        # if max overlap > 0, the class must be a fg class (not class 0)
                        nonzero_inds = np.where(max_overlaps > 0)[0]
                        assert all(max_classes[nonzero_inds] != 0)
                        roidb_noclass[
                            'bbox_targets'] = compute_bbox_regression_targets(
                                roidb_noclass)
                        roidb[i] = roidb_noclass.copy()
                        roidb[i][u'height'] = HEIGHT
                        roidb[i][u'width'] = WIDTH

                    else:
                        roidb[i] = roidb_noclass.copy()
                        roidb[i][u'height'] = HEIGHT
                        roidb[i][u'width'] = WIDTH

            #print('aa')
                    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
                    im, im_scale = blob_utils.prep_im_for_blob(
                        im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
                    im_scales.append(im_scale)
                    processed_ims.append(im)
                else:
                    im = cv2.imread(roidb[i]['image'])
                    assert im is not None, \
                        'Failed to read image \'{}\''.format(roidb[i]['image'])
                    if roidb[i]['flipped']:
                        im = im[:, ::-1, :]
                    target_size = cfg.TRAIN.SCALES[scale_inds[i]]
                    im, im_scale = blob_utils.prep_im_for_blob(
                        im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
                    im_scales.append(im_scale)
                    processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales, error_flag
Exemplo n.º 15
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    #print("qwryyudfggjhgkjgk{}sdfgfdsg".format(roidb))
    # print("minibatch.py 118 此轮roidb的长度为:",len(roidb))
    # 获得数据的数量
    num_images = len(roidb)
    # 在这批数据中最XXXX的采样随机比例   (600,)这个的len()只是1 np.random.randint即在第一个参数和'high'值-1,的整数间生成list,list元素数量是roidb的数量
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES),
        size=num_images)  # 因为cfg.TRAIN.SCALES为(600,), 所以生成的是一个全为0的list
    processed_ims = []  # 图片数据的list
    im_scales = []  # 尺度比例list
    for i in range(num_images):

        try:
            im = cv2.imread(roidb[i]['image'])  # 读取roidb的图像数据

        except Exception as e:
            print("Exception:", e)
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])    # 如果图像不存在则assert
        if roidb[i]['flipped']:  # 如果图的flipped为翻转,则翻转
            im = im[:, ::-1, :]  # 对图像的宽做倒序  即x轴flipped

        img_ = im
        #-------------在无多尺度版本中增加色彩模块----------------------------------
        if MULTI_COLOR:
            color_random = random.uniform(0, 1)
            #print("color_random--------------",color_random)
            if color_random <= GAUSSIAN:
                #print("高斯")
                img_ = randomGaussian(img_, GAUSSIAN_KERNEL, GAUSSIAN_SIGMAX)
            elif color_random > GAUSSIAN and color_random <= CAB:
                #print("融合暗")
                img_ = Contrast_and_Brightness(ALPHA, GAMMA, img_)
            elif color_random > CAB and color_random <= GAMMA:
                #print("GAMMA")
                img_ = gamma_trans(img_, GAMMA_THRESHOLD)
            elif color_random > GAMMA and color_random <= HSV:
                #print("HSV")
                img_ = img2darker(img_, HSV_THRESHOLD)
            elif color_random > HSV and color_random <= BRIGHT:
                #print("BRIGHT")
                img_ = bright_trans(img_, BRIGHT_THRESHOLD)
            else:
                pass

        #-----------------------------------------------------------------------
        # s_t1 = time.time()
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]  # target_size是600
        im, im_scale = blob_utils.prep_im_for_blob(  # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)  # 加入到im_scales的list中
        processed_ims.append(im)  # 加入到图像数据list中

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)
    #e_t1 = time.time()
    #t_t1 = e_t1 - s_t1
    #print("时间_最终:{}".format(t_t1))
    return blob, im_scales
Exemplo n.º 16
0
def _get_img_blob_mul(roidb):

    num_images = len(roidb)
    processed_img = []
    imgs_scale = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)
    all_roidb = []

    for i in range(num_images):
        # print(i)
        #print("minibatch.py 187 @@@@@@@    roidb[boxes]{}".format(roidb[i]['boxes']))
        img_path = roidb[i]['image']
        #print("minibatch.py  189  image:------",img_path)
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        # 如果图的flipped为翻转,则翻转
        if roidb[i]['flipped']:
            img = img[:, ::-1, :]
        # target_size是600,或者yaml中设置的尺度
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
        im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(roidb[i])
        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了
        # s_t = time.time()
        # ---------------------尽量不改变原roidb的值
        roidb_n = roidb[i]
        #
        if ROTATION:  # 是否旋转
            rot_random = random.uniform(0, 1)
            if rot_random <= ROT:
                roidb_n = {}
                roidb_n['boxes'] = copy.deepcopy(roidb[i]['boxes'])
                roidb_n['width'] = roidb[i]['width']
                roidb_n['height'] = roidb[i]['height']
                roidb_n['has_visible_keypoints'] = roidb[i][
                    'has_visible_keypoints']
                roidb_n['flipped'] = roidb[i]['flipped']
                roidb_n['seg_areas'] = copy.deepcopy(roidb[i]['seg_areas'])
                roidb_n['dataset'] = roidb[i]['dataset']
                roidb_n['segms'] = copy.deepcopy(roidb[i]['segms'])
                roidb_n['id'] = roidb[i]['id']
                roidb_n['image'] = roidb[i]['image']
                roidb_n['gt_classes'] = roidb[i]['gt_classes']
                roidb_n['gt_overlaps'] = roidb[i]['gt_overlaps']
                roidb_n['is_crowd'] = roidb[i]['is_crowd']
                roidb_n['box_to_gt_ind_map'] = roidb[i]['box_to_gt_ind_map']
                roidb_n['max_classes'] = roidb[i]['max_classes']
                roidb_n['max_overlaps'] = roidb[i]['max_overlaps']
                roidb_n['bbox_targets'] = roidb[i]['bbox_targets']
                if ROT_RANDOM:
                    angle = random.randint(-ROT_RANDOM_ANGLE, ROT_RANDOM_ANGLE)
                else:
                    angle = random.randint(1, 4)
                    angle = angle * 90.0
                img_, h_, w_, l, n_w, n_h = rotate_image(img_, angle,
                                                         True)  # 裁剪完后的图
                angle = (angle / 180.0 * math.pi)
                # 坐标调整,先计算pad后坐标,再计算旋转后,在计算裁剪后
                for m, roi_boxes in enumerate(roidb_n['boxes']):
                    roi_boxes[0] = roi_boxes[0] + int((l - w_) / 2.0)
                    roi_boxes[1] = roi_boxes[1] + int((l - h_) / 2.0)
                    roi_boxes[2] = roi_boxes[2] + int((l - w_) / 2.0)
                    roi_boxes[3] = roi_boxes[3] + int((l - h_) / 2.0)
                    x0, y0 = rot_compute(l / 2, l / 2, roi_boxes[0],
                                         roi_boxes[1], angle)
                    x1, y1 = rot_compute(l / 2, l / 2, roi_boxes[2],
                                         roi_boxes[1], angle)
                    x2, y2 = rot_compute(l / 2, l / 2, roi_boxes[0],
                                         roi_boxes[3], angle)
                    x3, y3 = rot_compute(l / 2, l / 2, roi_boxes[2],
                                         roi_boxes[3], angle)
                    min_x, min_y, max_x, max_y = box_coordinate(
                        x0, y0, x1, y1, x2, y2, x3, y3)
                    min_x = min_x - int((l - n_w) / 2.0)
                    min_y = min_y - int((l - n_h) / 2.0)
                    max_x = max_x - int((l - n_w) / 2.0)
                    max_y = max_y - int((l - n_h) / 2.0)
                    roidb_n['boxes'][m][0] = int(min_x)
                    roidb_n['boxes'][m][1] = int(min_y)
                    roidb_n['boxes'][m][2] = int(max_x)
                    roidb_n['boxes'][m][3] = int(max_y)
                # Maskrcnn的点的扩增模块----------------------------------------------------------------
                if MASKRCNN_SWITCH:
                    for m_segme, roi_segms in enumerate(roidb_n['segms']):
                        for m_segme_index in range(len(roi_segms) / 2):
                            roi_segms[m_segme][
                                m_segme_index] = roi_segms_point + int(
                                    (l - w_) / 2.0)
                            roi_segms[m_segme][m_segme_index +
                                               1] = roi_segms_point + int(
                                                   (l - h_) / 2.0)
                            x_segme, y_segme = rot_compute(
                                l / 2, l / 2,
                                roi_segms[m_segme][m_segme_index],
                                roi_segms[m_segme][m_segme_index + 1], angle)
                            roidb_n['segms'][m_segme][m_segme_index] = int(
                                x_segme)
                            roidb_n['segms'][m_segme][m_segme_index +
                                                      1] = int(y_segme)
                # -----------------------------------------------------------------------------------
                # roidb[i] = roidb_n
            else:
                pass
        # e_t_ = time.time()
        # t_t_ = e_t_ - s_t
        # print("旋转时间_:{}".format(t_t_))

        coor, new_boxes_crop, img_crop_w, img_crop_h, index_list = crop(
            h, w, roidb_n, WIDTH_REGION, HEIGHT_REGION)
        # 裁剪后实例分割的相对应的segms -------------Maskrcnn的点的扩增模块-----------------------------------
        if MASKRCNN_SWITCH:
            roidb_n['segms'] = roidb_n['segms'][index_list]
            segms = []
            seg_areas = []
            for m_s, roi_s in enumerate(roidb_n['segms']):
                roi_s = np.array(roi_s).reshape(1, -1, 2)
                img_se = np.zeros((roidb_n['height'], roidb_n['width'], 3))
                imag = cv2.drawContours(img_se, roi_s, -1, (255, 255, 255), -1)
                imag = imag[coor[0]:coor[1], coor[2]:coor[3]]
                imag = cv2.cvtColor(imag, cv2.COLOR_BGR2GRAY)
                _, contours, hierarchy = cv2.findContours(
                    imag, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
                for kk, con_point in enumerate(contours):
                    if con_point[0][0] == 0:
                        con_point[0][0] = 1
                    elif con_point[0][0] == img_crop_w - 1:
                        con_point[0][0] = con_point[0][0] - 1
                    else:
                        pass
                    if con_point[0][1] == 0:
                        con_point[0][1] = 1
                    elif con_point[0][1] == img_crop_w - 1:
                        con_point[0][1] = con_point[0][0] - 1
                    else:
                        pass
                roi_s = contours.reshape(1, -1)
                eara = float(int(cv2.contourArea(contours[0])))
                segms.append(roi_s)
                seg_areas.append(eara)

            roidb_n['segms'] = segms
            roidb_n['seg_areas'] = np.array(eara, dtype=np.float)

        # -------------------------------------------------------------------------------------------------------
        #  深拷贝以避免改变原始图像数据
        img_ = copy.deepcopy(img_[coor[0]:coor[1], coor[2]:coor[3]])
        # e_t = time.time()
        # t_t = e_t - s_t
        # print("时间:{}".format(t_t))
        # 随机决定要不要做色度上的数据扩增
        if MULTI_COLOR:
            color_random = random.uniform(0, 1)
            #print("ccccccc",color_random)
            if color_random <= GAUSSIAN:
                #print("高斯")
                img_ = randomGaussian(img_, GAUSSIAN_KERNEL, GAUSSIAN_SIGMAX)
            elif color_random <= CAB:
                pass
            else:
                #print("融合暗")
                img_ = Contrast_and_Brightness(ALPHA, GAMMA, img_)

        if not new_boxes_crop == []:
            #----如果裁剪完后有缺陷
            #print("执行了minibatch.py 230")
            new_roidb = creat_new_roidb(roidb_n, img_crop_w, img_crop_h,
                                        new_boxes_crop, index_list)
            # e_t2 = time.time()
            # t_t2= e_t2 - s_t
            #print("时间_创建新roidb:{}".format(t_t2))
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            #im, imscale = blob_utils.prep_im_for_blob(img[coor[0]:coor[1],coor[2]:coor[3]], cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)
            # e_t3 = time.time()
            # t_t3= e_t3 - s_t
            # print("时间_创建新roidb:{}".format(t_t3))
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(new_roidb)
        else:
            #----如果裁剪完后是一张好的图
            #print("执行了minibatch.py 239")
            roidb_copy = creat_new_roidb_empty(roidb_n, img_crop_w, img_crop_h)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            # im, imscale = blob_utils.prep_im_for_blob(img[coor[0]:coor[1],coor[2]:coor[3]], cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)

    blob = blob_utils.im_list_to_blob(processed_img)
    # print(" minibatch  266 @@@@@@@imgs_scale{}, roidb[boxes]{}]".format(imgs_scale,all_roidb))
    #print(len(all_roidb))
    #print(all_roidb)
    # e_t__ = time.time()
    # t_t__ = e_t__ - s_t
    # print("时间_最终:{}".format(t_t__))
    return blob, imgs_scale, all_roidb
Exemplo n.º 17
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    #print("qwryyudfggjhgkjgk{}sdfgfdsg".format(roidb))
    # print("minibatch.py 118 此轮roidb的长度为:",len(roidb))
    # 获得数据的数量
    num_images = len(roidb)
    # 在这批数据中最XXXX的采样随机比例   (600,)这个的len()只是1 np.random.randint即在第一个参数和'high'值-1,的整数间生成list,list元素数量是roidb的数量
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES),
        size=num_images)  # 因为cfg.TRAIN.SCALES为(600,), 所以生成的是一个全为0的list
    processed_ims = []  # 图片数据的list
    im_scales = []  # 尺度比例list
    for i in range(num_images):
        #print("minibatch.py 109   @@@@@@@   roidb的boxes{}".format(roidb[i]['boxes']))
        try:
            im = cv2.imread(roidb[i]['image'])  # 读取roidb的图像数据
            #print("---这是此次的for循环的第{}/{}轮,图像为{}".format(i,num_images,roidb[i]['image']))
        except Exception as e:
            print("Exception:", e)
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])    # 如果图像不存在则assert
        if roidb[i]['flipped']:  # 如果图的flipped为翻转,则翻转
            im = im[:, ::-1, :]  # 对图像的宽做倒序  即x轴flipped
        # s_t1 = time.time()
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]  # target_size是600
        im, im_scale = blob_utils.prep_im_for_blob(  # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)  # 加入到im_scales的list中
        processed_ims.append(im)  # 加入到图像数据list中

        #--------------------- 无多尺度下开启旋转模块 --------------------------------------
        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了
        if ROTATION:  # 是否旋转
            rot_random = random.uniform(0, 1)
            if rot_random <= ROT:
                roidb_n = {}
                roidb_n['boxes'] = copy.deepcopy(roidb[i]['boxes'])
                roidb_n['width'] = roidb[i]['width']
                roidb_n['height'] = roidb[i]['height']
                roidb_n['has_visible_keypoints'] = roidb[i][
                    'has_visible_keypoints']
                roidb_n['flipped'] = roidb[i]['flipped']
                roidb_n['seg_areas'] = roidb[i]['seg_areas']
                roidb_n['dataset'] = roidb[i]['dataset']
                roidb_n['segms'] = roidb[i]['segms']
                roidb_n['id'] = roidb[i]['id']
                roidb_n['image'] = roidb[i]['image']
                roidb_n['gt_classes'] = roidb[i]['gt_classes']
                roidb_n['gt_overlaps'] = roidb[i]['gt_overlaps']
                roidb_n['is_crowd'] = roidb[i]['is_crowd']
                roidb_n['box_to_gt_ind_map'] = roidb[i]['box_to_gt_ind_map']
                roidb_n['max_classes'] = roidb[i]['max_classes']
                roidb_n['max_overlaps'] = roidb[i]['max_overlaps']
                roidb_n['bbox_targets'] = roidb[i]['bbox_targets']
                if ROT_RANDOM:
                    angle = random.randint(-ROT_RANDOM_ANGLE, ROT_RANDOM_ANGLE)
                else:
                    angle = random.randint(1, 4)
                    angle = angle * 90.0
                img_, h_, w_, l, n_w, n_h = rotate_image(img_, angle,
                                                         True)  # 裁剪完后的图
                angle = (angle / 180.0 * math.pi)
                # 坐标调整,先计算pad后坐标,再计算旋转后,在计算裁剪后
                for m, roi_boxes in enumerate(roidb_n['boxes']):
                    roi_boxes[0] = roi_boxes[0] + int((l - w_) / 2.0)
                    roi_boxes[1] = roi_boxes[1] + int((l - h_) / 2.0)
                    roi_boxes[2] = roi_boxes[2] + int((l - w_) / 2.0)
                    roi_boxes[3] = roi_boxes[3] + int((l - h_) / 2.0)
                    x0, y0 = rot_compute(l / 2, l / 2, roi_boxes[0],
                                         roi_boxes[1], angle)
                    x1, y1 = rot_compute(l / 2, l / 2, roi_boxes[2],
                                         roi_boxes[1], angle)
                    x2, y2 = rot_compute(l / 2, l / 2, roi_boxes[0],
                                         roi_boxes[3], angle)
                    x3, y3 = rot_compute(l / 2, l / 2, roi_boxes[2],
                                         roi_boxes[3], angle)
                    min_x, min_y, max_x, max_y = box_coordinate(
                        x0, y0, x1, y1, x2, y2, x3, y3)
                    min_x = min_x - int((l - n_w) / 2.0)
                    min_y = min_y - int((l - n_h) / 2.0)
                    max_x = max_x - int((l - n_w) / 2.0)
                    max_y = max_y - int((l - n_h) / 2.0)
                    roidb_n['boxes'][m][0] = int(min_x)
                    roidb_n['boxes'][m][1] = int(min_y)
                    roidb_n['boxes'][m][2] = int(max_x)
                    roidb_n['boxes'][m][3] = int(max_y)
                # Maskrcnn的点的扩增模块----------------------------------------------------------------
                if MASKRCNN_SWITCH:
                    for m_segme, roi_segms in enumerate(roidb_n['segms']):
                        for m_segme_index in range(len(roi_segms) / 2):
                            roi_segms[m_segme][
                                m_segme_index] = roi_segms_point + int(
                                    (l - w_) / 2.0)
                            roi_segms[m_segme][m_segme_index +
                                               1] = roi_segms_point + int(
                                                   (l - h_) / 2.0)
                            x_segme, y_segme = rot_compute(
                                l / 2, l / 2,
                                roi_segms[m_segme][m_segme_index],
                                roi_segms[m_segme][m_segme_index + 1], angle)
                            roidb_n['segms'][m_segme][m_segme_index] = int(
                                x_segme)
                            roidb_n['segms'][m_segme][m_segme_index +
                                                      1] = int(y_segme)
                # -----------------------------------------------------------------------------------
                roidb[i] = roidb_n
            else:
                pass

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        #im, imscale = blob_utils.prep_im_for_blob(img[coor[0]:coor[1],coor[2]:coor[3]], cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        # e_t3 = time.time()
        # t_t3= e_t3 - s_t
        # print("时间_创建新roidb:{}".format(t_t3))
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(new_roidb)
        #--------------------- 无多尺度下开启旋转模块 --------------------------------------

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)
    #e_t1 = time.time()
    #t_t1 = e_t1 - s_t1
    #print("时间_最终:{}".format(t_t1))
    return blob, im_scales
Exemplo n.º 18
0
def _get_img_blob_mul(roidb):

    num_images = len(roidb)
    processed_img = []
    imgs_scale = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)
    all_roidb = []

    for i in range(num_images):
        img_path = roidb[i]['image']
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        # 如果图的flipped为翻转,则翻转
        if roidb[i]['flipped']:
            img = img[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
        im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(roidb[i])
        #print("roidb:---------------------",roidb[i])
        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了
        #----------------------旋转模块-------------------------------
        # ---------------------尽量不改变原roidb的值
        roidb_n = roidb[i]
        if ROTATION:  # 是否旋转
            rot_random = random.uniform(0, 1)
            if rot_random <= ROT:
                if ROT_RANDOM:
                    angle = random.randint(-ROT_RANDOM_ANGLE, ROT_RANDOM_ANGLE)
                else:
                    angle = random.randint(1, 4)
                    angle = angle * 90.0

                img_, h_, w_, l, n_w, n_h = rotate_image(img_, angle,
                                                         True)  # 裁剪完后的图
                angle = (angle / 180.0 * math.pi)

                roidb_n = creat_rotation_roidb(roidb_n, angle, l, w_, h_, n_w,
                                               n_h, MASKRCNN_SWITCH)

            else:
                pass
        # e_t_ = time.time()
        # t_t_ = e_t_ - s_t
        # print("旋转时间_:{}".format(t_t_))

        # print("copy图像时间:{}".format(t_t_))
        coor, new_boxes_crop, img_crop_w, img_crop_h, index_list = crop(
            h, w, roidb[i], WIDTH_REGION, HEIGHT_REGION)

        #  深拷贝以避免改变原始图像数据
        img_ = copy.deepcopy(img_[coor[0]:coor[1], coor[2]:coor[3]])
        # cv2.imwrite("crop_image.jpg", img_)

        # ------------------------ 色彩模块 --------------------------
        if MULTI_COLOR:
            color_random = random.uniform(0, 1)
            #print("ccccccc",color_random)
            if color_random <= GAUSSIAN:
                #print("高斯")
                img_ = randomGaussian(img_, GAUSSIAN_KERNEL, GAUSSIAN_SIGMAX)
            elif color_random > GAUSSIAN and color_random <= CAB:
                #print("融合暗")
                img_ = Contrast_and_Brightness(ALPHA, GAMMA, img_)
            elif color_random > CAB and color_random <= GAMMA:
                #print("GAMMA")
                img_ = gamma_trans(img_, GAMMA_THRESHOLD)
            elif color_random > GAMMA and color_random <= HSV:
                #print("GAMMA")
                img_ = img2darker(img_, HSV_THRESHOLD)
            elif color_random > HSV and color_random <= BRIGHT:
                #print("GAMMA")
                img_ = bright_trans(img_, BRIGHT_THRESHOLD)
            else:
                pass

        #----------------------------------------------------------

        if not new_boxes_crop == []:
            time_start = time.time()
            new_roidb = creat_new_roidb(roidb[i], img_crop_w, img_crop_h,
                                        new_boxes_crop, index_list, coor,
                                        MASKRCNN_SWITCH)  #MASKRCNN_SWITCH)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)

            # -----maskrcnn相关的的实例分割的相关代码已集成到creat_new_roidb模块中
            # time_start = time.time()
            # if MASKRCNN_SWITCH :
            #     segms = []
            #     seg_areas = []
            #     #print("roidb:---------------------",new_roidb )
            #     if len(new_roidb['segms'])>0:
            #         for m_s, roi_s in enumerate(new_roidb['segms']):
            #             roi_s = np.array(roi_s[0][:-4]).reshape(1,-1,2)
            #             img_se = np.zeros((roidb[i]['height'], roidb[i]['width'], 3))
            #             #img_se = np.zeros((roidb[i]['height'], roidb[i]['width']))
            #             img_se_ = img_se.copy()[coor[0]:coor[1], coor[2]:coor[3]]
            #             imag = cv2.drawContours(img_se, [roi_s],-1,(255,255,255),-1)
            #             #cv2.imwrite("mask_raw.jpg", imag)
            #             imag = imag[coor[0]:coor[1], coor[2]:coor[3]]
            #             # 必须转化为uint8格式,才可以进行二值化
            #             imag =  np.array(imag, dtype = np.uint8)
            #             #cv2.imwrite("mask_single.jpg", imag)
            #             #imag = cv2.imread("mask_single.jpg", 3)
            #             print("!@#^%^&^*^*",imag.dtype)
            #             gray = cv2.cvtColor(imag, cv2.COLOR_BGR2GRAY)
            #             #  一定要做二值化,否则出来的是散点
            #             ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
            #             _, contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
            #             img_fill = cv2.drawContours(imag, contours,-1,(0,255,0),-1)
            #             #cv2.imwrite("mask_single_fill.jpg", img_fill)
            #             if len(contours) > 0:
            #                 #print("------------------contours:-----------------",contours)
            #                 for kk, con_point in enumerate(contours):
            #                     if con_point[0][0][0] == 0:
            #                         con_point[0][0][0] = 1
            #                     elif con_point[0][0][0] == img_crop_w -1:
            #                         con_point[0][0][0] = img_crop_w - 2
            #                     else: pass
            #                     if con_point[0][0][1] == 0:
            #                         con_point[0][0][1] = 1
            #                     elif con_point[0][0][1] == img_crop_h -1:
            #                         con_point[0][0][1] = img_crop_h - 2
            #                     else: pass
            #                 roi_s = np.array(contours).reshape(1,-1)
            #                 area = float(int(cv2.contourArea(contours[0])))
            #                 segms.append(roi_s.tolist())
            #                 seg_areas.append(area)
            #                 # segms_ = []
            #                 # # 验证mask框-----
            #                 # for rk, roi_k in enumerate(segms):
            #                 #     roi_k = np.array(roi_k).reshape(-1,1,2)
            #                 #     segms_.append(roi_k)
            #                 # #print("!!!!!points!!!!!!!",segms_)
            #                 # imag_ = cv2.drawContours(img_se_, segms_ ,-1,(255,255,255),-1)
            #                 # cv2.imwrite("maskrcnn_crop.jpg", imag_)

            #         # ---------------------------------------------------------------------------------

            #     new_roidb['segms'] = segms
            #     new_roidb['seg_areas'] = np.array(seg_areas, dtype = np.float32)

            time_end = time.time()
            time_used = time_end - time_start
            print("Maskrcnn 裁剪耗时{}".format(time_used))
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(new_roidb)

        else:

            roidb_copy = creat_new_roidb_empty(roidb[i], img_crop_w,
                                               img_crop_h)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)

            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)

    blob = blob_utils.im_list_to_blob(processed_img)

    return blob, imgs_scale, all_roidb
Exemplo n.º 19
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    #print("qwryyudfggjhgkjgk{}sdfgfdsg".format(roidb))
    # print("minibatch.py 118 此轮roidb的长度为:",len(roidb))
    # 获得数据的数量
    num_images = len(roidb)
    # 在这批数据中最XXXX的采样随机比例   (600,)这个的len()只是1 np.random.randint即在第一个参数和'high'值-1,的整数间生成list,list元素数量是roidb的数量
    scale_inds = np.random.randint(
        0, high=len(cfg.TRAIN.SCALES),
        size=num_images)  # 因为cfg.TRAIN.SCALES为(600,), 所以生成的是一个全为0的list
    processed_img = []  # 图片数据的list
    im_scales = []
    all_roidb = []  # 尺度比例list
    for i in range(num_images):
        #print("minibatch.py 109   @@@@@@@   roidb的boxes{}".format(roidb[i]['boxes']))
        try:
            im = cv2.imread(roidb[i]['image'])  # 读取roidb的图像数据
            img = im.copy()
            #print("---这是此次的for循环的第{}/{}轮,图像为{}".format(i,num_images,roidb[i]['image']))
        except Exception as e:
            print("Exception:", e)
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])    # 如果图像不存在则assert
        if roidb[i]['flipped']:  # 如果图的flipped为翻转,则翻转
            im = im[:, ::-1, :]  # 对图像的宽做倒序  即x轴flipped
        # s_t1 = time.time()
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]  # target_size是600
        im, im_scale = blob_utils.prep_im_for_blob(  # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
            im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)  # 加入到im_scales的list中
        processed_img.append(im)  # 加入到图像数据list中

        all_roidb.append(roidb[i])

        #--------------------- 无多尺度下开启旋转模块 --------------------------------------
        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了
        roidb_n = roidb[i]
        if ROTATION:  # 是否旋转
            rot_random = random.uniform(0, 1)
            if rot_random <= ROT:
                if ROT_RANDOM:
                    angle = random.randint(-ROT_RANDOM_ANGLE, ROT_RANDOM_ANGLE)
                else:
                    angle = random.randint(1, 4)
                    angle = angle * 90.0

                img_, h_, w_, l, n_w, n_h = rotate_image(img_, angle,
                                                         True)  # 裁剪完后的图
                angle = (angle / 180.0 * math.pi)

                roidb_n = creat_rotation_roidb(roidb_n, angle, l, w_, h_, n_w,
                                               n_h, MASKRCNN_SWITCH)

            else:
                pass

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        #im, imscale = blob_utils.prep_im_for_blob(img[coor[0]:coor[1],coor[2]:coor[3]], cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
        im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        # e_t3 = time.time()
        # t_t3= e_t3 - s_t
        # print("时间_创建新roidb:{}".format(t_t3))
        processed_img.append(im)
        im_scales.append(imscale)
        all_roidb.append(roidb_n)
        #--------------------- 无多尺度下开启旋转模块 --------------------------------------

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_img)
    #e_t1 = time.time()
    #t_t1 = e_t1 - s_t1
    #print("时间_最终:{}".format(t_t1))
    return blob, im_scales
Exemplo n.º 20
0
def _get_image_blob(roidb):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)
    processed_ims = []
    im_scales = []
    im_crops = []
    for i in range(num_images):
        im = cv2.imread(roidb[i]['image'])
        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]

        if cfg.WSL.USE_DISTORTION:
            hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
            s0 = npr.random() * (cfg.WSL.SATURATION - 1) + 1
            s1 = npr.random() * (cfg.WSL.EXPOSURE - 1) + 1
            s0 = s0 if npr.random() > 0.5 else 1.0 / s0
            s1 = s1 if npr.random() > 0.5 else 1.0 / s1
            hsv = np.array(hsv, dtype=np.float32)
            hsv[:, :, 1] = np.minimum(s0 * hsv[:, :, 1], 255)
            hsv[:, :, 2] = np.minimum(s1 * hsv[:, :, 2], 255)
            hsv = np.array(hsv, dtype=np.uint8)
            im = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

        if cfg.WSL.USE_CROP:
            im_shape = np.array(im.shape)
            crop_dims = im_shape[:2] * cfg.WSL.CROP

            r0 = npr.random()
            r1 = npr.random()
            s = im_shape[:2] - crop_dims
            s[0] *= r0
            s[1] *= r1
            im_crop = np.array(
                [s[0], s[1], s[0] + crop_dims[0] - 1, s[1] + crop_dims[1] - 1],
                dtype=np.int32)

            im = im[im_crop[0]:im_crop[2] + 1, im_crop[1]:im_crop[3] + 1, :]
        else:
            im_crop = np.array([0, 0, im.shape[0] - 1, im.shape[1] - 1],
                               dtype=np.int32)

        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(im, cfg.PIXEL_MEANS,
                                                   target_size,
                                                   cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        im_crops.append(im_crop)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales, im_crops
Exemplo n.º 21
0
def _get_img_blob_mul(roidb):

    num_images = len(roidb)
    processed_img = []
    imgs_scale = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)
    all_roidb = []

    for i in range(num_images):
        # print(i)
        #print("minibatch.py 187 @@@@@@@    roidb[boxes]{}".format(roidb[i]['boxes']))
        img_path = roidb[i]['image']
        #print("minibatch.py  189  image:------",img_path)
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        # 如果图的flipped为翻转,则翻转
        if roidb[i]['flipped']:
            img = img[:, ::-1, :]
        # target_size是600,或者yaml中设置的尺度
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
        im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(roidb[i])
        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了
        # s_t = time.time()
        if ROTATION:  # 是否旋转
            rot_random = random.uniform(0, 1)
            if rot_random <= ROT:
                roidb_n = {}
                roidb_n['boxes'] = copy.deepcopy(roidb[i]['boxes'])
                roidb_n['width'] = roidb[i]['width']
                roidb_n['height'] = roidb[i]['height']
                roidb_n['has_visible_keypoints'] = roidb[i][
                    'has_visible_keypoints']
                roidb_n['flipped'] = roidb[i]['flipped']
                roidb_n['seg_areas'] = roidb[i]['seg_areas']
                roidb_n['dataset'] = roidb[i]['dataset']
                roidb_n['segms'] = roidb[i]['segms']
                roidb_n['id'] = roidb[i]['id']
                roidb_n['image'] = roidb[i]['image']
                roidb_n['gt_classes'] = roidb[i]['gt_classes']
                roidb_n['gt_overlaps'] = roidb[i]['gt_overlaps']
                roidb_n['is_crowd'] = roidb[i]['is_crowd']
                roidb_n['box_to_gt_ind_map'] = roidb[i]['box_to_gt_ind_map']
                roidb_n['max_classes'] = roidb[i]['max_classes']
                roidb_n['max_overlaps'] = roidb[i]['max_overlaps']
                roidb_n['bbox_targets'] = roidb[i]['bbox_targets']
                if ROT_RANDOM:
                    angle = random.randint(-ROT_RANDOM_ANGLE, ROT_RANDOM_ANGLE)
                else:
                    angle = random.randint(1, 4)
                    angle = angle * 90.0
                img_, h_, w_, l, n_w, n_h = rotate_image(img_, angle,
                                                         True)  # 裁剪完后的图
                angle = (angle / 180.0 * math.pi)
                # 坐标调整,先计算pad后坐标,再计算旋转后,在计算裁剪后
                for m, roi_boxes in enumerate(roidb_n['boxes']):
                    roi_boxes[0] = roi_boxes[0] + int((l - w_) / 2.0)
                    roi_boxes[1] = roi_boxes[1] + int((l - h_) / 2.0)
                    roi_boxes[2] = roi_boxes[2] + int((l - w_) / 2.0)
                    roi_boxes[3] = roi_boxes[3] + int((l - h_) / 2.0)
                    x0, y0 = rot_compute(l / 2, l / 2, roi_boxes[0],
                                         roi_boxes[1], angle)
                    x1, y1 = rot_compute(l / 2, l / 2, roi_boxes[2],
                                         roi_boxes[1], angle)
                    x2, y2 = rot_compute(l / 2, l / 2, roi_boxes[0],
                                         roi_boxes[3], angle)
                    x3, y3 = rot_compute(l / 2, l / 2, roi_boxes[2],
                                         roi_boxes[3], angle)
                    min_x, min_y, max_x, max_y = box_coordinate(
                        x0, y0, x1, y1, x2, y2, x3, y3)
                    min_x = min_x - int((l - n_w) / 2.0)
                    min_y = min_y - int((l - n_h) / 2.0)
                    max_x = max_x - int((l - n_w) / 2.0)
                    max_y = max_y - int((l - n_h) / 2.0)
                    roidb_n['boxes'][m][0] = int(min_x)
                    roidb_n['boxes'][m][1] = int(min_y)
                    roidb_n['boxes'][m][2] = int(max_x)
                    roidb_n['boxes'][m][3] = int(max_y)
                roidb[i] = roidb_n
            else:
                pass
        # e_t_ = time.time()
        # t_t_ = e_t_ - s_t
        # print("旋转时间_:{}".format(t_t_))
        coor, new_boxes_crop, img_crop_w, img_crop_h, index_list = crop(
            h, w, roidb[i], [0.8, 0.9], [0.8, 0.9])
        #  深拷贝以避免改变原始图像数据
        img_ = copy.deepcopy(img_[coor[0]:coor[1], coor[2]:coor[3]])
        # e_t = time.time()
        # t_t = e_t - s_t
        # print("时间:{}".format(t_t))
        # 随机决定要不要做色度上的数据扩增
        if MULTI_COLOR:
            color_random = random.uniform(0, 1)
            #print("ccccccc",color_random)
            if color_random <= GAUSSIAN:
                #print("高斯")
                img_ = randomGaussian(img_, GAUSSIAN_KERNEL, GAUSSIAN_SIGMAX)
            elif color_random <= CAB:
                pass
            else:
                #print("融合暗")
                img_ = Contrast_and_Brightness(ALPHA, GAMMA, img_)

        if not new_boxes_crop == []:
            #print("执行了minibatch.py 230")
            new_roidb = creat_new_roidb(roidb[i], img_crop_w, img_crop_h,
                                        new_boxes_crop, index_list)
            # e_t2 = time.time()
            # t_t2= e_t2 - s_t
            #print("时间_创建新roidb:{}".format(t_t2))
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            #im, imscale = blob_utils.prep_im_for_blob(img[coor[0]:coor[1],coor[2]:coor[3]], cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)
            # e_t3 = time.time()
            # t_t3= e_t3 - s_t
            # print("时间_创建新roidb:{}".format(t_t3))
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(new_roidb)
            # img__ = img_
            # img_name = str(new_roidb['image']).split("/",-1)[-1]
            # for mi, roi_ng in enumerate(new_roidb['boxes']):
            #     cv2.rectangle(img__, (roi_ng[0], roi_ng[1]),(roi_ng[2], roi_ng[3]), (255,0,0),2)
        else:
            #print("执行了minibatch.py 239")
            roidb_copy = creat_new_roidb_empty(roidb[i], img_crop_w,
                                               img_crop_h)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            # im, imscale = blob_utils.prep_im_for_blob(img[coor[0]:coor[1],coor[2]:coor[3]], cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE)
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)
            # img__ = img_
            # img_name = str(roidb_copy['image']).split("/",-1)[-1]
        # time_n = time.time()
        # cv2.imwrite("/home/icubic/detectron_img/" + img_name[:-4] +  "_" +str(time_n) + ".jpg" , img__)

    blob = blob_utils.im_list_to_blob(processed_img)
    # print(" minibatch  266 @@@@@@@imgs_scale{}, roidb[boxes]{}]".format(imgs_scale,all_roidb))
    #print(len(all_roidb))
    #print(all_roidb)
    # e_t__ = time.time()
    # t_t__ = e_t__ - s_t
    # print("时间_最终:{}".format(t_t__))
    return blob, imgs_scale, all_roidb
Exemplo n.º 22
0
def get_img_blob(roidb):
    num_images = len(roidb)

    processed_img = []
    imgs_scale = []
    roidb_base = {}
    all_roidb = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)

    for i in range(num_images):
        # print(i)
        roidb_copy = {}
        # print("minibatch.py  220 @@@@@@@roidb[boxes]{}".format(roidb[i]['boxes']))
        img_path = roidb[i][u'image']
        # print("minibatch.py  222  image:------------------",img_path)
        img = cv2.imread(img_path)
        # img=np.array(img)
        z = crop(img, roidb[i])
        image, new_boxes_crop, new_classes_crop, img_crop_w, img_crop_h, index_list = z
        # for i in range(len(new_boxes_crop)):
        #     bbox = new_boxes_crop[i]
        #     x_min = bbox[0]
        #     y_min = bbox[1]
        #     x_max = bbox[2]
        #     y_max = bbox[3]
        # cv2.rectangle(image, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 6)
        # cv2.imwrite('./new_img.jpg',image)

        if not new_boxes_crop == []:
            # print("minibatch   237   ",index_list)
            gt_class = roidb[i]['gt_classes'][index_list]
            # print("minibatch   239   ",gt_class)
            gt_overlaps = roidb[i]['gt_overlaps'][index_list]
            max_overlaps = roidb[i]['max_overlaps'][
                index_list]  #np.max(gt_overlaps,axis=1)
            max_classes = roidb[i]['max_classes'][
                index_list]  #np.argmax(gt_overlaps,axis=1)

            roidb_copy = roidb[i]
            roidb_copy['boxes'] = np.array(new_boxes_crop, dtype=np.float32)
            roidb_copy[u'width'] = img_crop_w
            roidb_copy[u'height'] = img_crop_h
            roidb_copy['gt_classes'] = gt_class
            roidb_copy['gt_overlaps'] = gt_overlaps
            roidb_copy['is_crowd'] = roidb[i]['is_crowd'][index_list]
            roidb_copy['box_to_gt_ind_map'] = roidb[i]['box_to_gt_ind_map'][
                index_list]
            roidb_copy[u'max_classes'] = max_classes
            # print(roidb_copy[-1]['max_overlaps'])
            roidb_copy['max_overlaps'] = max_overlaps
            # m=roidb_copy[-1]['max_overlaps']
            box_target = compute_bbox_regression_targets(roidb_copy)

            roidb_copy['bbox_target'] = box_target
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)
        else:
            roidb_copy = roidb[i]
            roidb_copy[u'width'] = img_crop_w
            roidb_copy[u'height'] = img_crop_h
            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)
    if not processed_img == []:
        blob = blob_utils.im_list_to_blob(processed_img)
        # print(" minibatch  266 @@@@@@@imgs_scale{}, roidb[boxes]{}]".format(imgs_scale,all_roidb))
        return blob, imgs_scale, all_roidb
Exemplo n.º 23
0
def _get_img_blob_mul(roidb):

    num_images = len(roidb)
    processed_img = []
    imgs_scale = []
    scale_inds = np.random.randint(0, len(cfg.TRAIN.SCALES), size=num_images)
    all_roidb = []

    for i in range(num_images):
        img_path = roidb[i]['image']
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        # 如果图的flipped为翻转,则翻转
        if roidb[i]['flipped']:
            img = img[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        # im是 resize后的数据, im_scale 是resize的比例  参数中cfg.PIXEL_MEANS/cfg.TRAIN.MAX_SIZE在配置文件中有配置
        im, imscale = blob_utils.prep_im_for_blob(img, cfg.PIXEL_MEANS,
                                                  target_size,
                                                  cfg.TRAIN.MAX_SIZE)
        processed_img.append(im)
        imgs_scale.append(imscale)
        all_roidb.append(roidb[i])

        img_ = img.copy()  # 其实在原图做完计算之后可以不用考虑值会改变的事了

        # print("copy图像时间:{}".format(t_t_))
        coor, new_boxes_crop, img_crop_w, img_crop_h, index_list = crop(
            h, w, roidb[i], WIDTH_REGION, HEIGHT_REGION)

        #  深拷贝以避免改变原始图像数据
        img_ = copy.deepcopy(img_[coor[0]:coor[1], coor[2]:coor[3]])

        if not new_boxes_crop == []:
            new_roidb = creat_new_roidb(roidb[i], img_crop_w, img_crop_h,
                                        new_boxes_crop, index_list)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)

            time_start = time.time()
            if MASKRCNN_SWITCH:
                segms = []
                seg_areas = []
                for m_s, roi_s in enumerate(new_roidb['segms']):
                    roi_s = np.array(roi_s).reshape(1, -1, 2)
                    img_se = np.zeros(
                        (new_roidb['height'], new_roidb['width'], 3))
                    imag = cv2.drawContours(img_se, roi_s, -1, (255, 255, 255),
                                            -1)
                    imag = imag[coor[0]:coor[1], coor[2]:coor[3]]
                    imag = cv2.cvtColor(imag, cv2.COLOR_BGR2GRAY)
                    _, contours, hierarchy = cv2.findContours(
                        imag, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
                    for kk, con_point in enumerate(contours):
                        if con_point[0][0] == 0:
                            con_point[0][0] = 1
                        elif con_point[0][0] == img_crop_w - 1:
                            con_point[0][0] = con_point[0][0] - 1
                        else:
                            pass
                        if con_point[0][1] == 0:
                            con_point[0][1] = 1
                        elif con_point[0][1] == img_crop_w - 1:
                            con_point[0][1] = con_point[0][0] - 1
                        else:
                            pass
                    roi_s = contours.reshape(1, -1)
                    eara = float(int(cv2.contourArea(contours[0])))
                    segms.append(roi_s)
                    seg_areas.append(eara)

                new_roidb['segms'] = segms
                new_roidb['seg_areas'] = np.array(eara, dtype=np.float)

            time_end = time.time()
            time_used = time_end - time_start
            print("Maskrcnn 裁剪耗时{}".format(time_used))
            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(new_roidb)

        else:

            roidb_copy = creat_new_roidb_empty(roidb[i], img_crop_w,
                                               img_crop_h)

            target_size = cfg.TRAIN.SCALES[scale_inds[i]]
            im, imscale = blob_utils.prep_im_for_blob(img_, cfg.PIXEL_MEANS,
                                                      target_size,
                                                      cfg.TRAIN.MAX_SIZE)

            processed_img.append(im)
            imgs_scale.append(imscale)
            all_roidb.append(roidb_copy)

    blob = blob_utils.im_list_to_blob(processed_img)

    return blob, imgs_scale, all_roidb
Exemplo n.º 24
0
def _get_image_blob_s6_0(roidb, roidb_noclass1):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """

    num_images = len(roidb)
    # Sample random scales to use for each image in this batch
    scale_inds = np.random.randint(0,
                                   high=len(cfg.TRAIN.SCALES),
                                   size=num_images)
    processed_ims = []
    im_scales = []
    error_flag = [0, 0]

    for i in range(num_images):
        roidb_noclass = roidb_noclass1.copy()
        if roidb[i][u'image'].split('/')[-1] == u'test.jpg':
            random_bbox = dict()
            random_bbox['kernel_size'] = 224
            random_bbox['tl_x'] = 0
            random_bbox['tl_y'] = 0
            x0 = random_bbox['tl_x']
            x1 = random_bbox['tl_x'] + random_bbox['kernel_size']
            y0 = random_bbox['tl_y']
            y1 = random_bbox['tl_y'] + random_bbox['kernel_size']
            im = cv2.imread(roidb[i]['image'])[y0:y1, x0:x1]
            im = cv2.resize(im, (WIDTH, HEIGHT))
            #cv2.imwrite('/home/icubic/aa.png',im)
            error_flag[i] = 0
            roidb[i] = roidb_noclass.copy()
            roidb[i][u'height'] = HEIGHT
            roidb[i][u'width'] = WIDTH
        else:
            if 1:
                real_class = []  #roidb[i]['gt_classes'][0]
                num_real_class = len(roidb[i]['gt_classes'])

                random_bbox = dict()
                random_bbox['kernel_size'] = 224
                random_bbox['tl_x'] = random.randint(0, 800)
                random_bbox['tl_y'] = random.randint(0, 800)
                x0 = random_bbox['tl_x']
                x1 = random_bbox['tl_x'] + random_bbox['kernel_size']
                y0 = random_bbox['tl_y']
                y1 = random_bbox['tl_y'] + random_bbox['kernel_size']
                im = cv2.imread(roidb[i]['image'])[y0:y1, x0:x1]
                im = cv2.resize(im, (WIDTH, HEIGHT))
                sum_inside_overlaps = 0
                boxes_inside_overlaps = []

                for i_roidb, sub_boxes in enumerate(roidb[i][u'boxes']):
                    crop_x0 = int(sub_boxes[0])
                    crop_y0 = int(sub_boxes[1])
                    crop_x1 = int(sub_boxes[2])
                    crop_y1 = int(sub_boxes[3])
                    #real_x0 = float(crop_x0 - x0)*1024/224  # float(crop_x0) / 1024 * 224
                    #real_y0 = float(crop_y0 - y0)*1024/224  # float(crop_y0) / 1024 * 224
                    #real_x1 = float(crop_x1 - x0)*1024/224  # float(crop_x1) / 1024 * 224
                    #real_y1 = float(crop_y1 - y0)*1024/224

                    overlaps_rate = solve_coincide(
                        (x0, y0, x1, y1), (crop_x0, crop_y0, crop_x1, crop_y1))
                    if overlaps_rate > 0.9:
                        sum_inside_overlaps = sum_inside_overlaps + 1
                        #real_x0 = crop_x0 - x0  # float(crop_x0) / 1024 * 224
                        #real_y0 = crop_y0 - y0  # float(crop_y0) / 1024 * 224
                        #real_x1 = crop_x1 - x0  # float(crop_x1) / 1024 * 224
                        #real_y1 = crop_y1 - y0
                        real_x0 = float(
                            crop_x0 -
                            x0) * WIDTH / 224  # float(crop_x0) / 1024 * 224
                        real_y0 = float(
                            crop_y0 -
                            y0) * HEIGHT / 224  # float(crop_y0) / 1024 * 224
                        real_x1 = float(
                            crop_x1 -
                            x0) * WIDTH / 224  # float(crop_x1) / 1024 * 224
                        real_y1 = float(crop_y1 - y0) * HEIGHT / 224
                        if real_x0 < 0:
                            real_x0 = 0
                        if real_x0 > WIDTH:
                            real_x0 = WIDTH

                        if real_x1 < 0:
                            real_x1 = 0
                        if real_x1 > WIDTH:
                            real_x1 = WIDTH

                        if real_y0 < 0:
                            real_y0 = 0
                        if real_y0 > HEIGHT:
                            real_y0 = HEIGHT

                        if real_y1 < 0:
                            real_y1 = 0
                        if real_y1 > HEIGHT:
                            real_y1 = HEIGHT

                        boxes_inside_overlaps.append(
                            [real_x0, real_y0, real_x1, real_y1])
                        real_class.append(roidb[i]['gt_classes'][i_roidb])
                        #cv2.rectangle(im, (int(real_x0), int(real_y0)),
                        #(int(real_x1), int(real_y1)), (255, 0, 255))
                        #cv2.imwrite('/home/icubic/daily_work/code/circruit/new/result/uu.png', im)
                #a = roidb[i]['gt_overlaps'].toarray()

                if sum_inside_overlaps > 0:
                    num_valid_objs = sum_inside_overlaps * 1
                    boxes = np.zeros((num_valid_objs, 4), dtype=np.float32)
                    gt_classes = np.zeros((num_valid_objs), dtype=np.int32)
                    gt_overlaps = np.zeros((num_valid_objs, 3),
                                           dtype=np.float32)
                    box_to_gt_ind_map = np.zeros((num_valid_objs),
                                                 dtype=np.int32)
                    is_crowd = np.zeros((num_valid_objs), dtype=np.bool)
                    for ix in range(num_valid_objs):
                        gt_classes[ix] = real_class[ix]  #real_class*1
                        try:
                            gt_overlaps[ix, real_class] = 1.0
                        except:
                            print('error')
                        is_crowd[ix] = False
                        box_to_gt_ind_map[ix] = ix
                        for i_index in range(4):
                            boxes[ix,
                                  i_index] = boxes_inside_overlaps[ix][i_index]

                    #for ix in range(num_valid_objs):
                    #box_to_gt_ind_map[ix] = ix
                    #cls = real_class*1
                    roidb_noclass['boxes'] = np.append(roidb_noclass['boxes'],
                                                       boxes,
                                                       axis=0)

                    roidb_noclass['gt_classes'] = np.append(
                        roidb_noclass['gt_classes'], gt_classes)
                    #mm = np.append(
                    #    roidb_noclass['gt_overlaps'].toarray(), gt_overlaps,axis=0)
                    roidb_noclass['gt_overlaps'] = np.append(
                        roidb_noclass['gt_overlaps'].toarray(), gt_overlaps)
                    roidb_noclass['gt_overlaps'] = scipy.sparse.csr_matrix(
                        roidb_noclass['gt_overlaps'])
                    #mm = np.append(mm, gt_overlaps, axis=0)
                    #roidb_noclass['gt_overlaps'] = scipy.sparse.csr_matrix(mm)
                    roidb_noclass['is_crowd'] = np.append(
                        roidb_noclass['is_crowd'], is_crowd)
                    roidb_noclass['box_to_gt_ind_map'] = np.append(
                        roidb_noclass['box_to_gt_ind_map'], box_to_gt_ind_map)

                    gt_overlaps = roidb_noclass['gt_overlaps'].toarray()
                    # max overlap with gt over classes (columns)
                    max_overlaps = gt_overlaps.max(axis=1)
                    # gt class that had the max overlap
                    max_classes = gt_overlaps.argmax(axis=1)
                    roidb_noclass['max_classes'] = max_classes
                    roidb_noclass['max_overlaps'] = max_overlaps
                    # sanity checks
                    # if max overlap is 0, the class must be background (class 0)
                    zero_inds = np.where(max_overlaps == 0)[0]
                    assert all(max_classes[zero_inds] == 0)
                    # if max overlap > 0, the class must be a fg class (not class 0)
                    nonzero_inds = np.where(max_overlaps > 0)[0]
                    assert all(max_classes[nonzero_inds] != 0)
                    roidb_noclass[
                        'bbox_targets'] = compute_bbox_regression_targets(
                            roidb_noclass)
                    roidb[i] = roidb_noclass.copy()
                    roidb[i][u'height'] = HEIGHT
                    roidb[i][u'width'] = WIDTH

                else:
                    roidb[i] = roidb_noclass.copy()
                    roidb[i][u'height'] = HEIGHT
                    roidb[i][u'width'] = WIDTH

            if 0:
                if sum_inside_overlaps == 0:
                    roidb[i] = roidb_noclass['0'].copy()
                    roidb[i][u'height'] = 1024
                    roidb[i][u'width'] = 1024
                if sum_inside_overlaps == 1:
                    num_valid_objs = 1
                    roidb[i] = roidb_noclass['1'].copy()
                    a = roidb[i]['gt_overlaps'].toarray()

                    #for i_inside in enumerate(sum_inside_overlaps)

                if sum_inside_overlaps == 2:
                    num_valid_objs = 2
                    roidb[i] = roidb_noclass['2'].copy()
                    a = roidb[i]['gt_overlaps'].toarray()

                if sum_inside_overlaps == 3:
                    num_valid_objs = 3
                    roidb[i] = roidb_noclass['3'].copy()
                    a = roidb[i]['gt_overlaps'].toarray()

            if 0:
                crop_x0 = int(roidb[i][u'boxes'][0][0])
                crop_y0 = int(roidb[i][u'boxes'][0][1])
                crop_x1 = int(roidb[i][u'boxes'][0][2])
                crop_y1 = int(roidb[i][u'boxes'][0][3])
                crop_w = crop_x1 - crop_x0
                crop_h = crop_y1 - crop_y0
                random_bbox = dict()
                random_bbox['kernel_size'] = 224
                random_bbox['tl_x'] = random.randint(0, 800)
                random_bbox['tl_y'] = random.randint(0, 800)
                x0 = random_bbox['tl_x']
                x1 = random_bbox['tl_x'] + random_bbox['kernel_size']
                y0 = random_bbox['tl_y']
                y1 = random_bbox['tl_y'] + random_bbox['kernel_size']
                #real_x0 = crop_x0-x0#float(crop_x0) / 1024 * 224
                #real_y0 = crop_y0-y0#float(crop_y0) / 1024 * 224
                #real_x1 = 1024#float(crop_x1) / 1024 * 224
                #real_y1 = 1024#float(crop_y1) / 1024 * 224
                overlaps_rate = solve_coincide(
                    (x0, y0, x1, y1), (crop_x0, crop_y0, crop_x1, crop_y1))
                im = cv2.imread(roidb[i]['image'])[y0:y1, x0:x1]
                #im = cv2.resize(im, (1024, 1024))
                if overlaps_rate > 0.9:
                    real_x0 = crop_x0 - x0  # float(crop_x0) / 1024 * 224
                    real_y0 = crop_y0 - y0  # float(crop_y0) / 1024 * 224
                    real_x1 = crop_x1 - x0  # float(crop_x1) / 1024 * 224
                    real_y1 = crop_y1 - y0
                    roidb[i][u'boxes'][0][0] = real_x0
                    roidb[i][u'boxes'][0][1] = real_y0
                    roidb[i][u'boxes'][0][2] = real_x1
                    roidb[i][u'boxes'][0][3] = real_y1
                    roidb[i][u'height'] = 224
                    roidb[i][u'width'] = 224
                    error_flag[i] = 1
                    #cv2.imwrite('/home/icubic/daily_work/code/Detectron/detectron/datasets/data/s6_test/aa.png',im)
                else:
                    roidb[i] = roidb_noclass.copy()
                    roidb[i][u'height'] = 224
                    roidb[i][u'width'] = 224
                    error_flag[i] = 0
            #print('aa')




        assert im is not None, \
            'Failed to read image \'{}\''.format(roidb[i]['image'])
        if roidb[i]['flipped']:
            im = im[:, ::-1, :]
        target_size = cfg.TRAIN.SCALES[scale_inds[i]]
        im, im_scale = blob_utils.prep_im_for_blob(im, cfg.PIXEL_MEANS,
                                                   target_size,
                                                   cfg.TRAIN.MAX_SIZE)
        im_scales.append(im_scale)
        processed_ims.append(im)

    # Create a blob to hold the input images
    blob = blob_utils.im_list_to_blob(processed_ims)

    return blob, im_scales, error_flag