Exemplo n.º 1
0
    def get_ground_truth(self, anchors, targets):
        """
        Args:
            anchors (list[list[Boxes]]): a list of N=#image elements. Each is a
                list of #feature level Boxes. The Boxes contains anchors of
                this image on the specific feature level.
            targets (list[Instances]): a list of N `Instances`s. The i-th
                `Instances` contains the ground-truth per-instance annotations
                for the i-th input image.  Specify `targets` during training only.

        Returns:
            gt_classes (Tensor):
                An integer tensor of shape (N, R) storing ground-truth
                labels for each anchor.
                R is the total number of anchors, i.e. the sum of Hi x Wi x A for all levels.
                Anchors with an IoU with some target higher than the foreground threshold
                are assigned their corresponding label in the [0, K-1] range.
                Anchors whose IoU are below the background threshold are assigned
                the label "K". Anchors whose IoU are between the foreground and background
                thresholds are assigned a label "-1", i.e. ignore.
            gt_anchors_deltas (Tensor):
                Shape (N, R, 4).
                The last dimension represents ground-truth box2box transform
                targets (dx, dy, dw, dh) that map each anchor to its matched ground-truth box.
                The values in the tensor are meaningful only when the corresponding
                anchor is labeled as foreground.
        """
        gt_classes = []
        gt_anchors_deltas = []
        anchors = [Boxes.cat(anchors_i) for anchors_i in anchors]
        # list[Tensor(R, 4)], one for each image

        for anchors_per_image, targets_per_image in zip(anchors, targets):
            match_quality_matrix = pairwise_iou(targets_per_image.gt_boxes,
                                                anchors_per_image)
            gt_matched_idxs, anchor_labels = self.matcher(match_quality_matrix)

            has_gt = len(targets_per_image) > 0
            if has_gt:
                # ground truth box regression
                matched_gt_boxes = targets_per_image.gt_boxes[gt_matched_idxs]
                gt_anchors_reg_deltas_i = self.box2box_transform.get_deltas(
                    anchors_per_image.tensor, matched_gt_boxes.tensor)

                gt_classes_i = targets_per_image.gt_classes[gt_matched_idxs]
                # Anchors with label 0 are treated as background.
                gt_classes_i[anchor_labels == 0] = self.num_classes
                # Anchors with label -1 are ignored.
                gt_classes_i[anchor_labels == -1] = -1
            else:
                gt_classes_i = torch.zeros_like(
                    gt_matched_idxs) + self.num_classes
                gt_anchors_reg_deltas_i = torch.zeros_like(
                    anchors_per_image.tensor)

            gt_classes.append(gt_classes_i)
            gt_anchors_deltas.append(gt_anchors_reg_deltas_i)

        return torch.stack(gt_classes), torch.stack(gt_anchors_deltas)
Exemplo n.º 2
0
    def _match_and_label_boxes(self, proposals, stage, targets):
        """
        Match proposals with groundtruth using the matcher at the given stage.
        Label the proposals as foreground or background based on the match.

        Args:
            proposals (list[Instances]): One Instances for each image, with
                the field "proposal_boxes".
            stage (int): the current stage
            targets (list[Instances]): the ground truth instances

        Returns:
            list[Instances]: the same proposals, but with fields "gt_classes" and "gt_boxes"
        """
        num_fg_samples, num_bg_samples = [], []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            match_quality_matrix = pairwise_iou(
                targets_per_image.gt_boxes, proposals_per_image.proposal_boxes)
            # proposal_labels are 0 or 1
            matched_idxs, proposal_labels = self.proposal_matchers[stage](
                match_quality_matrix)
            if len(targets_per_image) > 0:
                gt_classes = targets_per_image.gt_classes[matched_idxs]
                # Label unmatched proposals (0 label from matcher) as background (label=num_classes)
                gt_classes[proposal_labels == 0] = self.num_classes
                gt_boxes = targets_per_image.gt_boxes[matched_idxs]
            else:
                gt_classes = torch.zeros_like(matched_idxs) + self.num_classes
                gt_boxes = Boxes(
                    targets_per_image.gt_boxes.tensor.new_zeros(
                        (len(proposals_per_image), 4)))
            proposals_per_image.gt_classes = gt_classes
            proposals_per_image.gt_boxes = gt_boxes

            num_fg_samples.append((proposal_labels == 1).sum().item())
            num_bg_samples.append(proposal_labels.numel() - num_fg_samples[-1])

        # Log the number of fg/bg samples in each stage
        storage = get_event_storage()
        storage.put_scalar(
            "stage{}/roi_head/num_fg_samples".format(stage),
            sum(num_fg_samples) / len(num_fg_samples),
        )
        storage.put_scalar(
            "stage{}/roi_head/num_bg_samples".format(stage),
            sum(num_bg_samples) / len(num_bg_samples),
        )
        return proposals
Exemplo n.º 3
0
    def _get_ground_truth(self):
        """
        Returns:
            gt_objectness_logits: list of N tensors. Tensor i is a vector whose length is the
                total number of anchors in image i (i.e., len(anchors[i])). Label values are
                in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative class; 1 = positive class.
            gt_anchor_deltas: list of N tensors. Tensor i has shape (len(anchors[i]), 4).
        """
        gt_objectness_logits = []
        gt_anchor_deltas = []
        # Concatenate anchors from all feature maps into a single Boxes per image
        anchors = [Boxes.cat(anchors_i) for anchors_i in self.anchors]
        for image_size_i, anchors_i, gt_boxes_i in zip(self.image_sizes,
                                                       anchors, self.gt_boxes):
            """
            image_size_i: (h, w) for the i-th image
            anchors_i: anchors for i-th image
            gt_boxes_i: ground-truth boxes for i-th image
            """
            match_quality_matrix = pairwise_iou(gt_boxes_i, anchors_i)
            matched_idxs, gt_objectness_logits_i = self.anchor_matcher(
                match_quality_matrix)

            if self.boundary_threshold >= 0:
                # Discard anchors that go out of the boundaries of the image
                # NOTE: This is legacy functionality that is turned off by default in Detectron2
                anchors_inside_image = anchors_i.inside_box(
                    image_size_i, self.boundary_threshold)
                gt_objectness_logits_i[~anchors_inside_image] = -1

            if len(gt_boxes_i) == 0:
                # These values won't be used anyway since the anchor is labeled as background
                gt_anchor_deltas_i = torch.zeros_like(anchors_i.tensor)
            else:
                # TODO wasted computation for ignored boxes
                matched_gt_boxes = gt_boxes_i[matched_idxs]
                gt_anchor_deltas_i = self.box2box_transform.get_deltas(
                    anchors_i.tensor, matched_gt_boxes.tensor)

            gt_objectness_logits.append(gt_objectness_logits_i)
            gt_anchor_deltas.append(gt_anchor_deltas_i)

        return gt_objectness_logits, gt_anchor_deltas
def _evaluate_box_proposals(dataset_predictions,
                            lvis_api,
                            thresholds=None,
                            area="all",
                            limit=None):
    """
    Evaluate detection proposal recall metrics. This function is a much
    faster alternative to the official LVIS API recall evaluation code. However,
    it produces slightly different results.
    """
    # Record max overlap value for each gt box
    # Return vector of overlap values
    areas = {
        "all": 0,
        "small": 1,
        "medium": 2,
        "large": 3,
        "96-128": 4,
        "128-256": 5,
        "256-512": 6,
        "512-inf": 7,
    }
    area_ranges = [
        [0**2, 1e5**2],  # all
        [0**2, 32**2],  # small
        [32**2, 96**2],  # medium
        [96**2, 1e5**2],  # large
        [96**2, 128**2],  # 96-128
        [128**2, 256**2],  # 128-256
        [256**2, 512**2],  # 256-512
        [512**2, 1e5**2],
    ]  # 512-inf
    assert area in areas, "Unknown area range: {}".format(area)
    area_range = area_ranges[areas[area]]
    gt_overlaps = []
    num_pos = 0

    for prediction_dict in dataset_predictions:
        predictions = prediction_dict["proposals"]

        # sort predictions in descending order
        # TODO maybe remove this and make it explicit in the documentation
        inds = predictions.objectness_logits.sort(descending=True)[1]
        predictions = predictions[inds]

        ann_ids = lvis_api.get_ann_ids(img_ids=[prediction_dict["image_id"]])
        anno = lvis_api.load_anns(ann_ids)
        gt_boxes = [
            BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
            for obj in anno
        ]
        gt_boxes = torch.as_tensor(gt_boxes).reshape(
            -1, 4)  # guard against no boxes
        gt_boxes = Boxes(gt_boxes)
        gt_areas = torch.as_tensor([obj["area"] for obj in anno])

        if len(gt_boxes) == 0 or len(predictions) == 0:
            continue

        valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <=
                                                       area_range[1])
        gt_boxes = gt_boxes[valid_gt_inds]

        num_pos += len(gt_boxes)

        if len(gt_boxes) == 0:
            continue

        if limit is not None and len(predictions) > limit:
            predictions = predictions[:limit]

        overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)

        _gt_overlaps = torch.zeros(len(gt_boxes))
        for j in range(min(len(predictions), len(gt_boxes))):
            # find which proposal box maximally covers each gt box
            # and get the iou amount of coverage for each gt box
            max_overlaps, argmax_overlaps = overlaps.max(dim=0)

            # find which gt box is 'best' covered (i.e. 'best' = most iou)
            gt_ovr, gt_ind = max_overlaps.max(dim=0)
            assert gt_ovr >= 0
            # find the proposal box that covers the best covered gt box
            box_ind = argmax_overlaps[gt_ind]
            # record the iou coverage of this gt box
            _gt_overlaps[j] = overlaps[box_ind, gt_ind]
            assert _gt_overlaps[j] == gt_ovr
            # mark the proposal box and the gt box as used
            overlaps[box_ind, :] = -1
            overlaps[:, gt_ind] = -1

        # append recorded iou coverage level
        gt_overlaps.append(_gt_overlaps)
    gt_overlaps = torch.cat(gt_overlaps, dim=0)
    gt_overlaps, _ = torch.sort(gt_overlaps)

    if thresholds is None:
        step = 0.05
        thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
    recalls = torch.zeros_like(thresholds)
    # compute recall for each iou threshold
    for i, t in enumerate(thresholds):
        recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
    # ar = 2 * np.trapz(recalls, thresholds)
    ar = recalls.mean()
    return {
        "ar": ar,
        "recalls": recalls,
        "thresholds": thresholds,
        "gt_overlaps": gt_overlaps,
        "num_pos": num_pos,
    }
Exemplo n.º 5
0
    def label_and_sample_proposals(self, proposals, targets):
        """
        Prepare some proposals to be used to train the ROI heads.
        It performs box matching between `proposals` and `targets`, and assigns
        training labels to the proposals.
        It returns ``self.batch_size_per_image`` random samples from proposals and groundtruth
        boxes, with a fraction of positives that is no larger than
        ``self.positive_sample_fraction``.

        Args:
            See :meth:`ROIHeads.forward`

        Returns:
            list[Instances]:
                length `N` list of `Instances`s containing the proposals
                sampled for training. Each `Instances` has the following fields:

                - proposal_boxes: the proposal boxes
                - gt_boxes: the ground-truth box that the proposal is assigned to
                  (this is only meaningful if the proposal has a label > 0; if label = 0
                  then the ground-truth box is random)

                Other fields such as "gt_classes", "gt_masks", that's included in `targets`.
        """
        gt_boxes = [x.gt_boxes for x in targets]
        # Augment proposals with ground-truth boxes.
        # In the case of learned proposals (e.g., RPN), when training starts
        # the proposals will be low quality due to random initialization.
        # It's possible that none of these initial
        # proposals have high enough overlap with the gt objects to be used
        # as positive examples for the second stage components (box head,
        # cls head, mask head). Adding the gt boxes to the set of proposals
        # ensures that the second stage components will have some positive
        # examples from the start of training. For RPN, this augmentation improves
        # convergence and empirically improves box AP on COCO by about 0.5
        # points (under one tested configuration).
        if self.proposal_append_gt:
            proposals = add_ground_truth_to_proposals(gt_boxes, proposals)

        proposals_with_gt = []

        num_fg_samples = []
        num_bg_samples = []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            has_gt = len(targets_per_image) > 0
            match_quality_matrix = pairwise_iou(
                targets_per_image.gt_boxes, proposals_per_image.proposal_boxes)
            matched_idxs, matched_labels = self.proposal_matcher(
                match_quality_matrix)
            sampled_idxs, gt_classes = self._sample_proposals(
                matched_idxs, matched_labels, targets_per_image.gt_classes)

            # Set target attributes of the sampled proposals:
            proposals_per_image = proposals_per_image[sampled_idxs]
            proposals_per_image.gt_classes = gt_classes

            # We index all the attributes of targets that start with "gt_"
            # and have not been added to proposals yet (="gt_classes").
            if has_gt:
                sampled_targets = matched_idxs[sampled_idxs]
                # NOTE: here the indexing waste some compute, because heads
                # like masks, keypoints, etc, will filter the proposals again,
                # (by foreground/background, or number of keypoints in the image, etc)
                # so we essentially index the data twice.
                for (trg_name,
                     trg_value) in targets_per_image.get_fields().items():
                    if trg_name.startswith(
                            "gt_") and not proposals_per_image.has(trg_name):
                        proposals_per_image.set(trg_name,
                                                trg_value[sampled_targets])
            else:
                gt_boxes = Boxes(
                    targets_per_image.gt_boxes.tensor.new_zeros(
                        (len(sampled_idxs), 4)))
                proposals_per_image.gt_boxes = gt_boxes

            num_bg_samples.append(
                (gt_classes == self.num_classes).sum().item())
            num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1])
            proposals_with_gt.append(proposals_per_image)

        # Log the number of fg/bg samples that are selected for training ROI heads
        storage = get_event_storage()
        storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
        storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))

        return proposals_with_gt